
Summary of professional accomplishments

• Name and surname: Adam Woryna.

• Scientific degrees:

– Master in Mathematics (Discrete Mathematics and Mathematical Foundations of
Computational Sciences), Faculty of Mathematics and Physics, Silesian University of
Technology in Gliwice, title of the Master Thesis: The theory of group presentations,
supervisor: Professor Olga Macedońska, 03/2001,

– Ph.D. in Mathematics, Faculty of Mathematics, Physics and Chemistry of the Uni-
versity of Silesia in Katowice, Title of the Ph.D. Thesis: Time-varying Mealy au-
tomata and groups generated by these automata, supervisor: Professor Vitaliy
Sushchansky, 06/2005,

• University appointments: 02/2006 – present time: Adjunct (Associate Professor), Silesian
University of Technology in Gliwice, The Faculty of Applied Mathematics, Section of
Algebra.

• Indication of the achievement according to Article 16 Paragraph 2 of the Act of March
14, 2003 on scientific degrees and scientific title and on degrees and title in the field of
art (Dz. U. 2016 r. poz. 882 ze zm. w Dz. U. z 2016 r. poz. 1311)

The indicated scientific achievement consists of a series of eight publications entitled:

Transducers and the topological generation of wreath products of groups.

List of publications included in the achievement mentioned above

[H1] A. Woryna, The rank and generating set for iterated wreath products of cyclic groups,
Communications in Algebra, 39 (7) (2011), 2622–2631; IF 0.347,

[H2] A. Woryna, The rank and generating set for inverse limits of wreath products of
Abelian groups, Archiv der Mathematik, 99 (6) (2012), 557–565; IF 0.376,

[H3] A. Woryna, The topological decomposition of inverse limits of iterated wreath prod-
ucts of finite Abelian groups, Forum Mathematicum, 25 (6) (2013), 1263-–1290;
IF 0.733,

[H4] A. Woryna, The automaton realization of iterated wreath products of cyclic groups,
Communications in Algebra, 42 (3) (2014), 1354–1361; IF 0.388,

[H5] A. Woryna, On the automaton complexity of wreath powers of non-abelian finite
simple groups, Journal of Algebra, 405 (2014), 232–242; IF 0.599,

[H6] A. Woryna, On some universal construction of minimal topological generating sets
for inverse limits of iterated wreath products of non-Abelian finite simple groups,
Journal of Algebraic Combinatorics, 42 (2) (2015), 365-–390; IF 0.874,

[H7] A. Woryna, The Characterization by Automata of Certain Profinite Groups, Jour-
nal of Pure and Applied Algebra, 219 (5) (2015), 1564–1591; IF 0.669,

[H8] A. Woryna, On amenability of groups generated by homogeneous automorphisms and
their cracks, Forum Mathematicum, 28 (6) (2016), 1205–1213; IF 0.755.

1



Contents

1 Description of the field and motivation 3
1.1 Transducers and groups defined by them . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Trees of words: regular trees and spherically homogeneous trees . . . . . . . . . 5
1.3 The group Aut(X∗) and groups defined by time-varying automata . . . . . . . . 6
1.4 Sections, vertex permutations, and the automaton transformations . . . . . . . . 8
1.5 Rooted and directed automorphisms. The branch groups. . . . . . . . . . . . . . 9
1.6 Iterated wreath products. The group Aut(X∗) as a profinite group . . . . . . . . 11
1.7 The topological generation in the group Aut(X∗) . . . . . . . . . . . . . . . . . 13
1.8 The previous constructions of topological generating sets for wreath products . . 15

2 Discussion of the results on the basis of the works [H1]–[H8] 17
2.1 Automata for wreath powers of perfect groups – paper [H5] . . . . . . . . . . . 18
2.2 The method of wreath recursions – paper [H6] . . . . . . . . . . . . . . . . . . . 19
2.3 The automaton A and the group G(A) – cont. of [H6] . . . . . . . . . . . . . . 24
2.4 Generation of wreath products of abelian groups – papers [H1, H2, H4] . . . . 27
2.5 Topological decomposition into abelian free groups – paper [H3] . . . . . . . . . 31
2.6 Amenability – paper [H8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 The characterization of wreath products by automata – paper [H7] . . . . . . . 37

3 Discussion of other results 42
3.1 Some other achievements after PhD degree – papers [P1]–[P7] . . . . . . . . . 42
3.2 The scientific achievements in the PhD Thesis – papers [D1]–[D5] . . . . . . . 47
3.3 Some results from outside group theory – papers [S1]–[S5] . . . . . . . . . . . . 50

References 51



1 Description of the field and motivation

1.1 Transducers and groups defined by them

In the classical version, a transducer (so-called Mealy type automaton) can be imagined
as a directed graph with a finite set S of vertices (set of states of the automaton), in which
every edge is labeled by a pair x|y, where x and y are elements (letters) from a fixed, finite and
non-empty set X (alphabet). In this graph, any finite directed walk from an arbitrary state
s ∈ S defines in a natural way a finite sequence of pairs

x1|y1, x2|y2, . . . , xn|yn,

where xi, yi ∈ X for 1 ≤ i ≤ n. In this walk, we say that the word w := x1 . . . xn with
consecutive predecessors in these pairs (so-called input letters) turns into the word v := y1 . . . yn
with consecutive successors (output letters), or that the automaton being in a state s and
reading from the input tape the word w, writes on the output tape the word v. In the sequel,
when speaking of "automaton", we shall mean an automaton permuting the letters, that is a
graph with the property that for every vertex there are exactly |X| outgoing edges from this
vertex, and every letter in X belongs to the set of input letters on these outgoing edges as well
as to the set of output letters. In particular, for every state s ∈ S and a word w over X, there
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Figure 1: a minimal automaton generating an infinite 3-group

is a unique directed path starting in s such that the consecutive input letters on this path form
the word w and the consecutive output letters form a word of the same length as w. Thus
an arbitrary state of an automaton defines a transformation of the set X∗ of all words over
the alphabet X. This transformation can be described by using a so-called transition function
φ : S × X → S and an output function ψ : S × X → X of the automaton, which define this
automaton uniquely and describe it as a machine, which being in a state s ∈ S and reading
from the input tape a letter x ∈ X, goes to the state φ(s, x) and writes on the output tape the
letter ψ(s, x). We shall denote such an automaton as a quadruple

A = (S,X, φ, ψ).

Then for every state s ∈ S the image of any nonempty word w = x1 . . . xn under the transfor-
mation s̃ : X∗ → X∗ defined by s can be computed as follows:

s̃(w) = ψ(s1, x1) . . . ψ(sn, xn),
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where the states s1, . . . , sn are defined recursively: s1 := s, si+1 := φ(si, xi) for 1 ≤ i ≤ n− 1.
We also define s̃(ϵ) := ϵ, where ϵ is the empty word (unique sequence of length zero).

The assumption that the automaton A = (S,X, φ, ψ) permutes the alphabet implies that
the transformations s̃ (s ∈ S) are permutations of the set X∗, that is s̃ ∈ Sym(X∗). It can be
seen directly from the construction of these transformations that they preserve the lengths and
the beginning of words, that is for any w, v ∈ X∗, we have: |s̃(w)| = |w|, and if w and v have
a common beginning (prefix) of a given length, then so their images s̃(w) and s̃(v).

We call a transformation f : X∗ → X∗ for which there is a Mealy automaton A = (S,X, φ, ψ)
such that f = s̃ for some s ∈ S an automaton transformation over the alphabet X. We denote
the set of all automaton transformation over X by MA(X∗). Both the composition of au-
tomaton transformations and the inverse of an automaton transformation is also an automaton
transformation. In particular MA(X∗) ≤ Sym(X∗). Every subgroup G ≤ MA(X∗) is called
an automata group. For a single Mealy automaton A = (S,X, φ, ψ), the group generated by
the transformations s̃ ∈ Sym(X∗) for s ∈ S is called the group generated by the automaton A
and is denoted by G(A):

G(A) := ⟨s̃ : s ∈ S⟩.
Hence the group G(A) ≤ MA(X∗) is an example of a finitely generated automata group.

The notion of an automata group was introduced by V. M. Glushkov ([28]) in 1961, where he
conjectured that it is possible to obtain in this way an infinite finitely generated torsion group,
that is a group solving the famous Burnside problem from 1902. It was confirmed in 1972 by
S. V. Aleshin ([1]), who constructed for every prime p ≥ 2 an infinite p-group generated by
two transformations defined by two states of some two distinct Mealy automata over a p-letter
alphabet, one automaton having 3 states and the second automaton having p2 + p+ 3 states.

An another pioneering construction of a family of infinite p-groups generated by two au-
tomaton transformations over a p-letter alphabet introduced V. Sushchansky ([75]) in 1979.
He used for them the algebraic language of "tableaux" and truncated polynomials over finite
fields – the method introduced by L. Kaloujnine ([48]) to study the iterated wreath products.
In 2006, I. Bondarenko and D. Savchuk ([19]) investigated the sections of the Sushchansky
transformations, and obtained in this way a Mealy automaton with 2p2 + p + 5 states. They
derived various properties of the group generated by this automaton (the so-called self-similar
closure of the corresponding Sushchansky p-group).

In 1980 R. I. Grigorchuk ([30]) constructed a 5-state Mealy automaton over the binary
alphabet and showed that this automaton generates an infinite 2-group, which is presently
called the Grigorchuk group. Also, for every prime p ≥ 3, Grigorchuk ([35]) constructed a
minimal Mealy automaton (with respect to the number of states) generating an infinite p-
group. This automaton has 3 states, and it works over a p-letter alphabet (the case p = 3 is
depicted in Fig. 1). In particular, there is no 2-state Mealy automaton over a p-letter alphabet
which generates an infinite p-group. On the other hand, in the last year, I discovered for every
prime p ≥ 3 the 2-state Mealy automaton A over a p-letter alphabet which defines a universal
embedding for finite p-groups, that is every finite p-group can be embedded into the group G(A)
generated by this automaton (the case p = 3 is depicted in Fig. 2). This is the only known
example of a 2-state Mealy automaton which generates a branch group and one of the two
known examples (apart from the Apollonian group – [36]) of a regularly branch group which is
an indicable group (i.e. maps onto the infinite cyclic group). I reported this result in Kiev during
the International Conference "Groups and actions: geometry and dynamics" ([84]) and at the
seminar on Group Theory in the University of Geneva (Switzerland) at Grigorchuk’s invitation
([85]). For p = 2, the existence of such an automaton excludes the known classification of
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Figure 2: an automaton defining the universal embedding for finite 3-groups

groups (up to isomorphism) generated by a 2-state Mealy automaton over the binary alphabet;
these are ([35]): the trivial group, the cyclic groups C2 and C∞, the Klein group C2 × C2, the
infinite dihedral group D∞ and the lamplighter group C2wrC∞, that is the semidirect product⊕

C∞
C2 o C∞ with C∞ acting on the direct sum

⊕
C∞

C2 by left shift. Presently, there are
some partial results ([17]) in classification of groups generated by a 3-state Mealy automaton
over the binary alphabet (all finite and all abelian groups of this type are already classified).

The automata groups also constitute an interesting object to study the classical algorithmic
problems in group theory. For example, the known construction of composition of automata
and the construction of the inverse to an automaton, as well as the algorithm verifying if a
given state of an automaton defines the identity map (it is enough to check the outgoing paths
of length not greater than the number of all states) imply that finitely generated automata
groups have solvable word problem. On the other hand, in 2012, Z. Šunić and E. Ventura
([74]) obtained the construction of a Mealy automaton A such that the conjugacy problem
is not solvable in the group G(A). On basis of this construction, they also proved that the
isomorphism problem is not solvable in the class of groups generated by a Mealy automaton.

Undoubtedly, much of a contribution to a great interest in automata groups had the Grig-
orchuk group, which also solved the Milnor problem from 1968 on the possible types of group
growth (the Grigorchuk group has an intermediate growth – [31]) as well as the Day problem
from 1957 concerning the existence of an amenable group which is not elementary amenable
([32]). Various interesting examples of groups generated by a Mealy automaton have appeared
up to the present day. They are still intensively investigated (including the Grigorchuk group)
and many of them confirm one of the greater phenomenon in the modern group theory, that is
an automaton itself may have a very simple structure, being equipped with only two or three
states and working over an alphabet with a small number of letters, and yet it demonstrates
exoticism and high complexity as for the algebraic, geometric or algorithmic properties of the
group it generates.

1.2 Trees of words: regular trees and spherically homogeneous trees

The set X∗ of finite words over an alphabet X has the structure of an infinite locally finite
rooted tree: two words are connected with an edge if and only if one of them is obtained from
the other by adding a single letter to the end. The set Xn of words of length n (n ≥ 0) forms
the n-th level of the tree X∗, that is the set of all vertices with the distance n from the root
(which is the empty word ϵ). The tree X∗ is called a regular rooted tree, because for every
vertex w ∈ X∗ the number of its children (i.e. the words of the form wx for x ∈ X) does not
depend on w and is equal to |X|.

It is natural to consider a wider class of locally finite rooted trees, that is the trees in which
any two vertices in the same level (i.e. with the same distance from the root) have the same
number of children. Every such a tree is isomorphic to the tree X∗ of finite words over a
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changing alphabet X, which is defined as an infinite sequence

X := (X1, X2, . . .),

of alphabets Xi. The words of the tree X∗ constitute finite sequences of letters x1x2 . . . xn,
where xi ∈ Xi for 1 ≤ i ≤ n (we will not separate the letters by commas). Thus the elements
of the cartesian product Xn := X1 × . . . × Xn (n ≥ 1) are the words of length n, and these
words form the n-th level of the tree X∗ (we assume X0 := {ϵ}). In particular, the number of
children of any vertex in level n (n ≥ 0) is equal to |Xn+1|. The first four levels of an exemplary
tree X∗ are depicted in Fig. 3.
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Figure 3: the exemplary tree X∗

Definition 1 We call a changing alphabet X = (Xi)i≥1 bounded if the sequence (|Xi|)i≥1 is
bounded. Otherwise we call X unbounded. If the sequence X is constant, then it is called a
fixed alphabet and identified with the set X1.

Remark 1 In the sequel, we shall assume that if X = (Xi)i≥1 is a changing alphabet, then
the sets Xi are all finite and each of them has at least two elements.

1.3 The group Aut(X∗) and groups defined by time-varying automata

The automorphism group Aut(X∗) of the tree of words X∗ over a changing alphabet X =
(Xi)i≥1 consists of all permutations of the vertex set which preserve the root and the vertex
adjacency. These are exactly those permutations of the vertex set X∗ which preserve the lengths
and the beginnings of words.

In the case when the alphabet X = (Xi)i≥1 is fixed, the group MA(X∗) of all transfor-
mations defined by Mealy-type automata over X is a proper subgroup in Aut(X∗). If X is
not fixed, then we can also identify the groups generated by automata among the subgroups
of Aut(X∗). We refer to the corresponding automata as time-varying automata, or automata
over a changing alphabet. Such an automaton is created from a Mealy-type automaton by
putting a discrete time-scale, which allows to change the transition and output functions in the
consecutive moments of its action.
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Definition 2 An automaton A over a changing alphabet X = (Xi)i≥1 is defined as a finite set
S od states together with two infinite sequences

φ := (φ1, φ2, . . .), ψ := (ψ1, ψ2, . . .)

of transition functions φi : S×Xi → S and output functions ψi : S×Xi → Xi. We denote such
an automaton as a quadruple A = (S,X, φ, ψ).

Remark 2 In the sequel, instead of the term "automaton over a changing alphabet", or "time-
varying automaton", we shall use the simple term "automaton". Hence, saying "automaton",
we mean the automaton from Definition 2, distinguishing this notion from a Mealy-type au-
tomaton, treated as a special case of an automaton in which the sequences X = (Xi)i≥1,
φ = (φi)i≥1 and ψ = (ψi)i≥1 are all constant (and identified with their elements).

For every state s ∈ S of an automaton A = (S,X, φ, ψ), we can define, analogically as
for a Mealy-type automaton, a transformation s̃ : X∗ → X∗ in the following recursive way: if
w = x1 . . . xn ∈ X∗, then

s̃(w) = ψ1(s1, x1) . . . ψn(sn, xn),

where s1 := s and si+1 := φi(si, xi) for 1 ≤ i ≤ n − 1. It is convenient to interpret the
transformation s̃ as result of the action of a machine, which being in the i-th moment (i ≥ 1)
in a state q ∈ S and reading from the input tape a letter x ∈ Xi, it goes in the next moment to
the state φi(q, x) ∈ S, writes on the output tape the letter ψi(q, x) ∈ Xi and continues working
in the moment i + 1. Here, we also assume that A permutes the letters of the corresponding
alphabets, that is the maps

σs,i : Xi ∋ x 7→ ψi(s, x) ∈ Xi, i ≥ 1, s ∈ S

are permutations of the sets Xi. Then the automaton transformations s̃ (s ∈ S) are elements
of the group Aut(X∗). We will refer to the map σs,i ∈ Sym(Xi) (i ≥ 1, s ∈ S) as the label of
the state s in its i-th transition. If A is a Mealy automaton, then for each s ∈ S the labels σs,i
(i ≥ 1) coincide. In this case, we simply refer to the permutation σs := σs,1 ∈ Sym(X) as the
label of the state s.

The set T VA(X∗) of all automaton transformations over the changing alphabetX = (Xi)i≥1
also forms a proper subgroup in the group Aut(X∗). Similarly as in the case of Mealy-type
automata, we will refer to the subgroups of T VA(X∗) as automata groups, and for a single
automaton A = (S,X, φ, ψ), we call the group G(A) := ⟨s̃ : s ∈ S⟩ the group generated by the
automaton A. All these groups are examples of residually finite groups, as the whole group
Aut(X∗) is residually finite, which follows from the observation that the n-th level stabilizer

StabAut(X∗)(n) = {g ∈ Aut(X∗) : Xn ⊆ Fix(g)}, n ≥ 0,

is a normal subgroup of finite index and
∩

n≥0 StabAut(X∗)(n) = {idX∗}.
The idea of a time-varying automaton as a tool to define and study automorphism groups

of the tree of finite words over a changing alphabet was suggested by V. Sushchansky in 2001
as the theme of my Ph.D. thesis. At first, I even assumed the wider definition, allowing to
change the sets of states in the discrete time-scale of an automaton (originally, I also did not
assume the finiteness of these sets). I called the automata from this wider class time-varying
Mealy automata. This notion previously functioned in the literature (see, for example [58]),
but the investigation was reduced to the techniques for analysis and synthesis of automata,
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which involved only the study of their internal structure, including periodicity, representability,
finding automata realizations, constructing morphisms between automata and studying the
corresponding semigroups. Moreover, the previously investigated automata worked over a fixed
alphabet, allowing to change solely the sets of states, the transition functions and the output
functions. Consequently, that construction would not be suitable for defining automorphism
groups of an arbitrary homogeneous rooted tree, but only for automorphism groups of a regular
rooted tree.

1.4 Sections, vertex permutations, and the automaton transformations

Let X = (Xi)i≥1 be a changing alphabet, g ∈ Aut(X∗) and w ∈ X∗. Denote n := |w| +
1. Since the automorphism g preserves the lengths and the beginning of words, there is an
automorphism g{w} ∈ Aut(X∗(n)) of the tree X∗(n) of finite words over the changing alphabet
X(n) := (Xn, Xn+1, . . .), such that

g(wv) = g(w)g{w}(v), v ∈ X∗(n).

The automorphism g{w} is called the section of g at the word w. It describes the action of g
on the subtree of X∗ consisting of all descendants of the vertex w (this subtree is isomorphic
to the tree X∗(|w|+1)). In the regular case, i.e. when the alphabet X is fixed, we obviously have:
g{w} ∈ Aut(X∗). In this case, an important class of groups constitute self-similar groups, as
well as contracting groups ([60]).

Definition 3 If the alphabet X is fixed, then a group G ≤ Aut(X∗) is called self-similar if
g{w} ∈ G for all g ∈ G and w ∈ X∗. A self-similar group G ≤ Aut(X∗) is called contracting
if there is a finite subset S ⊆ G such that for every element g ∈ G the section of g at any
sufficiently long word w belongs to S (i.e. there is n := ng ≥ 0 such that g{w} ∈ S for every
word w ∈ X∗ with |w| > n). The set S is called the nucleus of G.

The restriction of the section g{w} ∈ Aut(X∗(|w|+1)) to the set X|w|+1 of all one-letter words
is called the vertex permutation of the automorphism g at the vertex w and denoted by σg,w:

σg,w : X|w|+1 → X|w|+1, σg,w := g{w}|X|w|+1
.

In particular σg,w ∈ Sym(X|w|+1). The vertex permutation σg,w tells us how g permutes the
children of the vertex w (in relative to this vertex). When assign to each vertex w ∈ X∗

the vertex permutation σg,w ∈ Sym(X|w|+1), we obtain the portrait of the automorphism g.
The portrait describes this automorphism uniquely, since the image (under g) of any word
w = x1 . . . xn ∈ X∗ can be computed as follows

g(w) = σg,w0(x1)σg,w1(x2) . . . σg,wn−1(xn),

where wi = x1 . . . xi (0 ≤ i ≤ n− 1) is the prefix of length i of the word w (further, we denote
by ≺ the relation of being a prefix). Conversely, if we choose arbitrarily the permutations
πw ∈ Sym(X|w|+1) (w ∈ X∗), then there is a unique g ∈ Aut(X∗) such that σg,w = πw for
every w ∈ X∗. By using the above formula, we can extend the action of an automorphism
g ∈ Aut(X∗) to the set Xω of infinite words over the alphabet X; namely if w = x1x2 . . . ∈ Xω,
then we have g(w) = σg,w0(x1)σg,w1(x2) . . ..

If g ∈ Aut(X∗) is an automaton transformation defined by a state s ∈ S of an automaton
A = (S,X, φ, ψ), then for every word w ∈ X∗ the section g{w} is determined by the state which
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A reaches after reading the word w starting from s. In particular, for every n ≥ 0, there are at
most |S| different sections of g at the words w ∈ Xn. Consequently, the sequence (αg(n))n≥0 is
bounded, where

αg(n) := |{g{w} : w ∈ Xn}|.

Conversely, if g ∈ Aut(X∗) is such that the sequence (αg(n))n≥0 is bounded, then it is possible to
construct an automaton A = (S,X, φ, ψ) such that g = s̃ for some s ∈ S. It is also not difficult
to construct automorphisms g ∈ Aut(X∗) such that the sequence (αg(n))n≥0 is unbounded.
The characterization of the transformations defined by Mealy automata is more restricted: if
the alphabet X is fixed, then an automorphism g ∈ Aut(X∗) is defined by a state of a Mealy
automaton over X if and only if the set {g{w} : w ∈ X∗} is finite.

1.5 Rooted and directed automorphisms. The branch groups.

The most well-known explicit constructions of finitely generated groups G ≤ Aut(X∗) are
based on the following two types of automorphisms.

Definition 4 An automorphism g ∈ Aut(X∗) is called rooted if σg,w = idX|w|+1
for every w ̸= ϵ.

Definition 5 Let g ∈ Aut(X∗). If there is u ∈ Xω such that g stabilizes u (i.e. g(u) = u) and
all nontrivial vertex permutations of g are located at the vertices with the distance from u not
greater than 1 (i.e. at the vertices of the form wx, where w ≺ u and x ∈ X|w|+1), then the
automorphism g is called directed and the word u is called the direction of g. If additionally,
all nontrivial vertex permutations of g are located at the vertices with the distance exactly 1
from u, and there is at most one nontrivial vertex permutation in each level of X∗, then g is
called 1-directed.

For example, in a 5-state Mealy automaton defining the Grigorchuk group one of the states
is trivial (i.e. it defines id{0,1}∗), another state is the (unique) nontrivial rooted automorphism,
and the remaining three states define 1-directed automorphisms with the common direction
1∞. Another example are the Gupta-Sidki groups constructed by N. Gupta and S. Sidki ([40])
in 1983. For every prime p > 2 the corresponding Gupta-Sidki group is an infinite p-group
generated by a Mealy automaton with four states over the alphabet X = {1, 2, . . . , p}; the
three of these states define rooted automorphisms of the tree X∗ (one of them being the trivial
automorphism id, an the other two are mutually inverse automorphisms a and a−1, where
σa,ϵ = σ := (1, 2, . . . , p)), and the fourth state defines the directed automorphism b ∈ Aut(X∗)
with the direction u = p∞ and with the following nontrivial vertex permutations σb,pi1 : = σ i
σb,pi2 : = σ−1 for every i ≥ 0. The group G := ⟨a, b⟩ is indeed generated a Mealy automaton
with four states (defining the above four automorphisms), which follows from the observation
that for any g ∈ {id, a, a−1, b} and any w ∈ X∗, we have: g{w} ∈ {id, a, a−1, b}. The Gupta-
Sidki groups (similarly as the Grigorchuk group) are still investigated (for example, in contrast
to the Grigorchuk group, the growth of these groups is not known).

The rooted and directed automorphisms can be investigated as automaton transformations.
However, in the case when the alphabet X = (Xi)i≥1 is unbounded (and only in this case),
not every directed automorphism g ∈ Aut(X∗) is an automaton transformation. On the other
hand, every 1-directed automorphism g ∈ Aut(X∗) is an automaton transformation (regardless
of the alphabet), as we have in this case αg(n) ≤ 3 for every n ≥ 0.

The tree X∗ of finite words and the group of automorphisms Aut(X∗) of such a tree, as well
as the notions of rooted and directed automorphisms, can be defined for an infinite sequence
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X = (Xi)i≥1 of arbitrary (finite or infinite) sets (that is not necessarily when X is a changing
alphabet). But then, in general, such a tree will not be locally finite and the group Aut(X∗) will
not be residually finite. This generalization was investigated by A. Rozhkov ([69]) in 1986, who
constructed for every prime p ≥ 3 an infinite torsion group Mp generated by two elements of
order 3 and considered the tree X∗ over the sequence X := (C7,M2, C7, C7,M3, C7, C7,M5, . . .).
Next, in the group Aut(X∗), he constructed a rooted automorphism r and a directed auto-
morphism d such that the group G = ⟨r, d⟩ is torsion and contains elements of all possible
finite orders (that is for every n ≥ 1 there is g ∈ G such that o(g) = n). The question on the
existence of such a group in the case when X is a changing alphabet is open. In particular, it
would be interesting to find an explicit construction of an automaton over a changing alphabet
generating such a group, or to show that such an automaton does not exist. In the "existence"
case the corresponding alphabet would have to be unbounded.

The concept of rooted and directed automorphisms provides also the general construction
of finitely generated branch groups ([6]).

Definition 6 A group G ≤ Aut(X∗) acting transitively on each level of the tree X∗ (we say
then that the action is spherically transitive) is called a branch group if for every n ≥ 0 the
subgroup RistG(n) := ⟨RistG(w) : w ∈ Xn⟩ is of finite index in G, where RistG(w) consists of
those elements g ∈ G which act trivially on every word not beginning with w (a so-called rigid
vertex stabilizer of w). If the groups RistG(n) (n ≥ 0) are only nontrivial, then G is called
weakly branch.

This important and presently intensively studied class of groups was introduced by Grig-
orchuk in 1997, providing a natural method for defining infinite groups whose every proper
quotient is finite (i.e. just-infinite groups). It can be shown that every infinite finitely gen-
erated group can be mapped onto a just-infinite group, and the class of all finitely generated
just-infinite groups naturally splits into three subclasses, one of which consists of branch groups
([33]). Initially, Grigorchuk supposed that every finitely generated branch group must be just-
infinite, and the only way to construct such a group is by using (as generators) the rooted and
directed automorphisms ([22]).

In the regular case, in the class of self-similar groups, we identify the subclass of regularly
branch groups.

Definition 7 Let G ≤ Aut(X∗) be a self-similar group acting spherically transitively on a
regular rooted tree X∗ and let K ▹ G be a normal subgroup of G. The group G is called
regularly branch over K if the index [G : K] is finite and for all k ∈ K and x0 ∈ X there is
h ∈ K ∩ StabG(1) such that h{x0} = k and h{x} = idX∗ for any x ̸= x0. In the case when K is
merely nontrivial, we say that G is regularly weakly branch.

The flagship examples of regularly branch groups are the Grigorchuk group, the Gupta-
Sidki groups, as well as the first examples of groups having a non-uniformly exponential growth
(i.e. the groups solving the Gromov problem) constructed by J. S. Wilsona ([81, 82]) in 2004.
The famous and intensively studied examples of regularly weakly branch groups are the fol-
lowing groups generated by a Mealy automaton: basilica group ([38]), Bartholdi-Grigorchuk
group, Brunner-Sidki-Vieira group ([6]), and the previously mentioned self-similar closures of
the Sushchansky p-groups.
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1.6 Iterated wreath products. The group Aut(X∗) as a profinite group

Let (G,X) and (H,Y ) be permutation groups of the sets X and Y , let HX be the direct
power of copies of H indexed by X with the elements written as functions f : X → H. For
every f ∈ HX and every g ∈ G the pair (f, g) defines a permutation of the cartesian product
X × Y of the sets X and Y in the following way:

(f, g)((x, y)) = (g(x), h(y)), (x, y) ∈ X × Y,

where h := f(x) ∈ H. The set of all such permutations (i.e. permutations of X × Y corre-
sponding to all pairs (f, g) ∈ HX × G) forms a permutation group on X × Y which is called
the permutational wreath product of the groups (G,X) and (H, Y ) and is denoted by H ≀X G.
The use of the G-set X in the above notation is justified, as the structure of the permutational
wreath product H ≀X G depends on this set. For example, if G, X and H are finite, then the
group H ≀XG is also finite, and its order is equal to |H||X| · |G|. The multiplication in this group
can be described as follows

(f, g)(f ′, g′) = (f ◦ f ′g, g ◦ g′),

where f ′g = g ◦ f ′ ∈ HX (we use here the right action convention for composition of mappings;
in particular, we have g◦g′(x) = g′(g(x)) and g◦f(x) = f(g(x)) ∈ H for any g, g′ ∈ G, f ∈ HX

and x ∈ X). This reveals the permutational wreath product H ≀X G as a group isomorphic to
the semidirect product HX oG, where G acts on the direct power HX by permuting the direct
factors in the same manner as it permutes the elements of X. In particular, if X is a finite set
with a fixed ordering of elements, for example X := {1, . . . ,m} for some m ≥ 1, then every
function f ∈ HX is a sequence (f(1), . . . , f(m)) of elements from H and the group HX is the
cartesian m-th power Hm = H × . . .×H. Thus the elements of H ≀X G can be written in the
form (h1, . . . , hm)π, where hj ∈ H (1 ≤ j ≤ m), π ∈ G. The multiplication in such a wreath
product H ≀X G can be described as follows:

(h1, . . . , hm)π (h′1, . . . , h
′
m)π

′ = (h1 ◦ h′π(1), . . . , hm ◦ h′π(m))π ◦ π′.

This construction is associative, i.e. if (K,Z) is a permutation group on the set Z, then
both the permutational wreath product (K ≀Y H) ≀X G and the permutational wreath product
K ≀X×Y (H ≀X G) are precisely the same permutation group on the set X × Y × Z ([57]).

Let now (Gi, Xi)i≥1 be an infinite sequence of permutation groups. For every i ≥ 1, we define
the iterated permutational wreath product Wi = ≀ik=1Gk of the first i groups as a permutation
group on the cartesian product X i = X1 × . . .×Xi as follows:

W1 := G1, Wi+1 := Gi+1 ≀X(i) Wi, i ≥ 1.

For every i ∈ N the mapping (f, g) 7→ g, where f ∈ (Gi+1)
Xi , g ∈ Wi, defines a homomorphism

ϕi : Wi+1 →Wi, and the sequence (Wi, ϕi)i≥1 forms an inverse system. We call the inverse limit

W∞ = ≀∞i=1Gi := lim←−
i

Wi = lim←−
i

≀ik=1Gk

of such an inverse system the infinitely iterated permutational wreath product of the sequence
(Gi, Xi)i≥1. Thus, according to the definition of the inverse limit, the group W∞ consists of all
sequences (hi)i≥1 from the infinite cartesian product

∏
i≥1Wi of the groups Wi = ≀ik=1Gk which

satisfy the following condition: ϕi(hi+1) = hi for each i ≥ 1. If the sets Xi are all finite, then
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each Wi is a finite group and we obtain W∞ as the inverse limit of finite groups, that is as a
profinite group.

Let X = (Xi)i≥1 be a changing alphabet and denote X1 := {x1,1, . . . , x1,m1}. An arbitrary
automorphism g ∈ Aut(X∗) is uniquely described by its one-letter sections g{x1,1}, . . . , g{x1,m1}
together with the vertex permutation σg,ϵ ∈ Sym(X1) at the root. The map

g 7→ (g{x1,1}, . . . , g{x1,m1})σg,ϵ

defines an isomorphism of the group Aut(X∗) with the permutational wreath product

Aut(X∗(2)) ≀X1 Sym(X1) = Aut(X∗(2))
m1 o Sym(X1).

By continuing this reasoning for the groups Aut(X∗(n)) (n = 2, 3, . . .), we obtain for every n ≥ 1

the isomorphism of the group Aut(X∗) with the permutational wreath product Aut(X∗(n+1)) ≀Xn

(≀ni=1Sym(Xi)). In particular, the quotient group Aut(X∗)/StabAut(X∗)(n) is isomorphic to the
n-iterated wreath product ≀ni=1Sym(Xi). The restriction g|n := g|Xn of any automorphism
g ∈ Aut(X∗) to the set Xn = X1 × . . . × Xn belongs to this wreath product, and the map
g 7→ (g|n)n≥1 defines an isomorphism of the group Aut(X∗) with the infinitely iterated wreath
product ≀∞i=1Sym(Xi).

The above description of the group Aut(X∗), as a profinite group, defines on this group a
natural profinite topology, in which the stabilizers StabAut(X∗)(n) (n ≥ 0) of consecutive levels of
the tree X∗ form a basis for the neighborhoods of idX∗ . This topology (called the congruence
topology) coincides with the metric topology in which two automorphisms are close to each
other if for some large number n, they act in the same way on level n. Such a metric can be
defined, for example, as follows:

δ(g, h) := inf{(1/2)n : ∀w ∈ Xn g(w) = h(w)}.

In particular, the wreath product ≀∞i=1Gi is a closed subgroup of Aut(X∗), which consists of all
automorphisms such that their vertex permutations at the vertices in level n (n ≥ 0) of the
tree X∗ belong to the group Gn+1:

≀∞i=1Gi = {g ∈ Aut(X∗) : ∀w ∈ X∗ σg,w ∈ G|w|+1}.

The relation
g = (g{x1,1}, . . . , g{x1,m1})σg,ϵ

identifies an automorphism g ∈ Aut(X∗) with the corresponding element of the wreath product
Aut(X∗(2))≀X1Sym(X1). This relation is called the wreath recursion of the automorphism g. The
multiplication of wreath recursions and the inverse operation agrees with the multiplication in
the above permutational wreath product; that is, we have:

g−1 = ((g{y1,1})
−1, . . . , (g{y1,m1})

−1)σ−1g,ϵ , (1)

where y1,i := σ−1g,ϵ (x1,i) for 1 ≤ i ≤ m1, and if h = (h{x1,1}, . . . , h{x1,m1})σh,ϵ, then

g ◦ h = (g{x1,1} ◦ h{z1,1}, . . . , g{x1,m1} ◦ h{z1,m1})σg,ϵ ◦ σh,ϵ, (2)

where z1,i := σg,ϵ(x1,i) for 1 ≤ i ≤ m1.
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Remark 3 If the vertex permutation σg,ϵ is trivial, then it is omitted in the wreath recursion,
and we write g = (g{x1,1}, . . . , g{x1,m1}). If all the sections g{x1,r} (1 ≤ r ≤ m1) are trivial, then
g is identified with the vertex permutation σg,ϵ. In this way, both the direct power Aut(X∗(2))

X1

and the symmetric group Sym(X1) are identified with the corresponding subgroups of the group
Aut(X∗) (i.e. with the stabilizer of the first level StabAut(X∗)(1) and the subgroup of rooted
automorphisms of the tree X∗, respectively).

The study of infinitely iterated permutational wreath products ≀∞i=1Gi of finite permutation
groups was initiated by L. Kaloujnine [47, 48] in the mid-40s last century. This was continued
by his students Y. V. Bodnarchuk ([14]), I. D. Ivanyuta ([42]), V. Sushchansky ([26, 76, 77, 78])
and others. It turns out that every pro-p Sylow subgroup of the group Aut(X∗) is of this form.
The wreath products ≀∞i=1Gi describe profinite completions of some finitely generated branch
groups and provide interesting examples and counterexamples in the theory of profinite groups
([34]). When the sequence (Gi, Xi)i≥1 is constant, we obtain the infinite wreath power ≀∞i=1G

(i)

of the group G := G1. These wreath powers characterize the so-called self-similar groups
of finite type described by a pattern of depth one ([18, 34]). Iterated permutational wreath
products of finite groups appear also as symmetry groups of such combinatorial structures as
nested designs ([3, 4]), or in chemistry, they describe symmetries of certain non-rigid molecules
([5, 83]). Nowadays, these groups are even found to be useful as descriptors for processing
information in the human visual system ([51]).

1.7 The topological generation in the group Aut(X∗)

Let X = (Xi)i≥1 be a changing alphabet and G ≤ Aut(X∗). We say that a subset S ⊆
Aut(X∗) topologically generates G if the group ⟨S⟩ generated by S is a dense subgroup of G.
By d(G), we denote the rank of G, that is the minimal number of elements in a generating
set (in the case when G is closed, we mean the topological rank, i.e. the minimal number of
elements in a topological generating set). If d(G) <∞, then we say that G is finitely generated
(resp. topologically finitely generated).

Definition 8 A generating set S of a group G ≤ Aut(X∗) (topologically generating set in the
case when G s closed) which satisfies |S| = d(G) is called a minimal generating set (resp. a
minimal topologically generating set).

According to the above defined profinite topology on Aut(X∗), a subset S of a group G ≤
Aut(X∗) topologically generates this group if and only if

⟨s|i : s ∈ S⟩ = ⟨g|i : g ∈ G⟩

for every i ≥ 0, where g|i denotes the restriction of g to the i-th level of the tree X∗. In
particular, we have d(G) ≥ d(G), where G is the topological closure of G in Aut(X∗).

The whole group Aut(X∗) is not topologically finitely generated as the infinite direct power
C
{0,1,2,...}
2 of the cyclic group C2 (and hence every finite power Ct

2, t = 1, 2, . . .) is a homomorphic
image of G. This image can be seen when assigning to each g ∈ Aut(X∗) the sequence from
CN0

2 such that the n-th element (n ≥ 0) of this sequence is equal to 0 or to 1, depending on the
parity of the product of the vertex permutations σg,w ∈ Sym(Xn+1) at the vertices w ∈ Xn.

In 1994, M. Bhattacharjee ([12]), when studying the wreath products ≀∞i=1Alt(ni) of alternat-
ing groups of degree ni ≥ 5, showed that they are topologically 2-generated. Consequently, if
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|Xi| ≥ 5 for every i ≥ 1, then the group Aute(X∗) ≤ Aut(X∗) of the alternating automorphisms
(i.e. the automorphisms with the vertex permutations all even) is topologically 2-generated.

Theorem 1 (Bhattacharjee, [12]) If |Xi| ≥ 5 for every i ≥ 1, then the wreath product
≀∞i=1Alt(Xi) is topologically 2-generated.

In 2006, M. Quick ([67]) extended this result to arbitrary non-abelian finite simple groups.

Theorem 2 (Quick, [67]) If (Hi, Xi)i≥1 is an arbitrary sequence of non-abelian finite simple
and transitive permutation groups, then the wreath product ≀∞i=1Hi is topologically 2-generated.

The Quick’s paper does not provide any construction of the corresponding topological gen-
erating set. In the Bhattacharjee’s work, we can find such a set – it is based on some specific
generators of the groups Alt(ni), which depend on the divisibility of the degree ni by four.
However, this construction seems to be quite complicated and not accessible for the further
study of the group generated by the constructed set.

In 2010, Bondarenko ([15]) formulated a condition when the wreath product ≀∞i=1Gi of tran-
sitive permutation groups (Gi, Xi) with the uniformly bounded ranks d(Gi) is topologically
finitely generated.

Theorem 3 (Bonadrenko, [15]) Let (Gi, Xi)i≥1 be a sequence of transitive permutation groups.
If the sequence (d(Gi))i≥1 is bounded, then d(≀∞i=1Gi) <∞ if and only if d(

∏
i≥1Gi/G

′
i) <∞.

In Theorem 3 the abelianizations Ai := Gi/G
′
i (i ≥ 1) are finite abelian groups, and hence

the infinite cartesian product
∏

i≥1Ai is a profinite abelian group. This profinite group can
be identified with a closed subgroup of the group Aut(X∗), where the changing alphabet X =
(Xi)i≥1 comes from regular actions of the groups Ai on themselves, that is Xi := Ai for every
i ≥ 1. Then

∏
i≥1Ai is a closed subgroup of the wreath product ≀∞i=1Ai, consisting of the so-called

homogeneous automorphisms, that is the automorphisms for which the vertex permutations at
the vertices in any given level of X∗ coincide (obviously, the vertex permutations at the vertices
from distinct levels may differ). The rank of such a cartesian product can be computed as
follows:

d(
∏
i≥1

Ai) = sup
p∈P

(sup
i≥1

ρi,p),

where P is the set of all primes, and ρi,p is the number of cyclic p-groups in the canonical
decomposition of the product A1 × . . . × Ai into the direct product of cyclic groups of prime-
power orders.

In one direction Theorem 3 is obvious because the direct product
∏

i≥1Gi/G
′
i is a homomor-

phic image of the group ≀∞i=1Gi (as its abelianization). For the converse, Bondarenko showed that
if the groups (Gi, Xi) satisfy some additional conditions, then there exists a finite topological
generating set of the wreath product ≀∞i=1Gi, which consists of rooted and directed automor-
phisms. He also observed that the boundedness of the sequence (d(Gi))i≥1 is not necessary for
the group ≀∞i=1Gi to be topologically finitely generated.

A quite different and purely algebraical approach was used by E. Detomi and A. Luchcini
([23]) in 2013 to provide the following complete characterization for the wreath products ≀∞i=1Gi

to be topologically finitely generated.

Theorem 4 (Detomi, Luchcini, [23]) Let (Gi, Xi)i≥1 be a sequence of transitive permu-
tation groups. Then d(≀∞i=1Gi) < ∞ if and only if d(

∏
i≥1Gi/G

′
i) < ∞ and the sequence

(d(Gi)/Ni−1)i≥2 is bounded, where Ni := |X1| · . . . · |Xi| for i ≥ 1.
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In the proof of Theorem 4, the authors investigated the factors of the maximal normal
sequence (chief factors) of a finite group H and compared these factors with the chief factors of
the permutational wreath product H ≀Y G with a transitive permutation group (G, Y ). However,
this approach, similarly as the Quick’s work, does not provide any construction of a topological
generating set for the group ≀∞i=1Gi.

1.8 The previous constructions of topological generating sets for wreath products

As a part of my PhD Thesis, I showed (the paper [D5] from 2006 – the description is given on
p. 48) that the wreath product ≀∞i=1Cmi

of finite cyclic transitive permutation groups Cmi
with a

pairwise coprime orders is topologically 2-generated. But, in contrast to the above cited works,
I constructed a clear and simple 2-element topological generating set for this wreath product,
as well as I investigated the group generated by this set. I realized that construction by an
automaton with a 2-element set of states over the alphabet X = (Xi)i≥1 in which |Xi| = mi for
i ≥ 1. In particular, I introduced the wreath product ≀∞i=1Cmi

as a group generated by a 2-state
automaton, that is by a minimal automaton for this wreath product.

Definition 9 We say that a groupG ≤ Aut(X∗) is generated by an automatonA = (S,X, φ, ψ),
if the equality G(A) = G holds, or, if G is closed, the equality G(A) = G. Additionally, if
|S| = d(G), then we say that the automaton A is minimal for G, and if |S| = d(G) + 1 and
one of the states is trivial (i.e. it defines the identity automorphism), then we call A an almost
minimal automaton for G.

Definition 10 An automaton A generating a group G ≤ Aut(X∗) is called optimal for G, if
the number of its states is not greater than the number of any other automaton generating G.

The previously known constructions of finite topological generating sets for permutational
wreath products of the form ≀∞i=1Gi were studied only for some particular sequences (Gi, Xi)i≥1
of non-abelian simple groups (such as the alternating groups Alt(ni) and the projective special
linear groups PSL2(pi)), or for some unspecified perfect groups satisfying additional conditions
for the actions on the sets Xi (a group G is called perfect if it coincides with the commutator
subgroup G′ = [G,G]). In particular, there was no known construction of a finite topological
generating set for the wreath product ≀∞i=1Ai of abelian groups. All these constructions were
based on rooted and directed automorphisms, which implies that the resulting sets were far
from minimal (the only exceptions were two specific constructions for the wreath products of
alternating groups, that is the mentioned above Bhattacharjee’s construction and the listed
below Wilson’s construction of two directed automorphisms in the wreath product of the al-
ternating groups Alt(ni) of degree ni ≥ 29). Furthermore, the notion of an automaton was not
used for the description of these sets and the problem of the existence of a minimal or almost
minimal automaton was not investigated. On the other hand, it was proved that the groups
generated by these sets, apart from that they are dense in the corresponding wreath product,
satisfy another properties. This allowed to discover interesting properties of finitely generated
residually finite groups and to settle some conjectures on these groups.

The pioneer result of this type was the P. M. Neumann’s ([63]) construction of a finitely
generated just-infinite perfect group G isomorphic to the permutational wreath product G ≀
Alt(6). In his work, Neumann showed that every subnormal subgroup of G is isomorphic to
the finite direct power of G, but G does not satisfy the ascending chain condition on subnormal
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subgroups. This provided new examples of atomic (minimal) groups with respect to the relation
of largeness defined by S. J. Pride’a in the class of all groups.

D. Segal ([70]) constructed a group generated by a 4-element topological generating set
(two rooted and two 1-directed automorphisms) of the wreath product ≀∞i=1PSL2(pi) with a
suitable chosen sequence (pi)i≥1 of distinct primes, and invalidated in this way the conjecture
of Lubotzky, Pyber and Shalev on subgroup growth of a finitely generated group. In the same
work, he also showed, on basis of rooted and 1-directed automorphisms, that if (Gi, Xi) are non-
abelian simple transitive groups satisfying: StabGi

(x) ̸= StabGi
(y) for x ̸= y, then the group

≀∞i=1Gi contains a 63-generated just-infinite subgroup G with the congruence subgroup property
(i.e. every finite index subgroup K ≤ G contains a stabilizer StabG(n) for some n = nK ≥ 1).
As a result, he obtained that all finite images of G coincide with the finite images of finitely
iterated wreath products ≀ni=1Gi (n ≥ 1), and that the profinite completion Ĝ is isomorphic
to the topological closure G = ≀∞i=1Gi. He concluded that if C is any non-empty collection
of non-abelian finite simple groups, then there exists a 63-generated just-infinite group whose
upper composition factors comprise exactly the set C (an upper composition factor means a
composition factor of some finite image of the group).

J. S. Wilson ([81, 82]) investigated some specific generating pairs (eligible pairs) of the
alternating groups Alt(m) of degree m ≥ 29. He used these pairs in the construction of two
directed automorphisms of orders 2 and 3, and showed that these automorphisms generate a
perfect group G isomorphic to the wreath product G ≀ Alt(m). This allowed him to solve the
previously mentioned Gromov problem. The eligible pairs were also used by J. Brieussel ([20])
in the construction of two directed automorphisms of orders 2 and 3 in the wreath product
≀∞i=1Alt(ni) of the alternating groups of degree ni ≥ 29, obtaining in this way a 2-generated
group of intermediate growth, which is dense in this wreath product.

Some more general and geometric construction was introduced by Bondarenko ([15]). He
investigated an arbitrary perfect transitive permutation group (H,X) which does not act freely
on the set X. Based on an arbitrary generating set {h1, . . . , hm} of H, he defines for every
1 ≤ j ≤ m two automorphisms rj, dj ∈ ≀∞i=1H

(i) by their vertex permutations σrj ,w, σdj ,w
(w ∈ X∗) as follows:

σrj ,w :=

{
hj, w = ϵ,
idX , w ̸= ϵ,

σdj ,w :=

{
hj, w = xi1x2, i ≥ 0,
idX , otherwise,

where x1, x2 ∈ X are arbitrarily chosen letters with the distinct stabilizers (hence the assump-
tion that H does not act freely). In particular rj is a rooted automorphism and dj is a 1-directed
automorphism with the direction x∞1 . He showed that the set S = {r1, . . . , rm, d1, . . . , dm}
topologically generates the infinite wreath power ≀∞i=1H

(i), and that G := ⟨S⟩ is a just-infinite
regularly branch group over itself. Moreover, G has the congruence subgroup property and
it contains maximal subgroups of infinite index. This is the only known example of branch
groups having maximal subgroups of infinite index (for example, in the Grigorchuk group,
every maximal subgroup is of index two).
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2 Discussion of the results on the basis of the works [H1]–[H8]

The previously described results on finite topological generation of wreath products ≀∞i=1Gi

have inspired me to the further (already after my PhD study) exploration of this topic. For
this purpose, I used the geometric description of the group Aut(X∗), basing on the analysis
of the portraits of suitable constructed automorphisms, as well as the combinatorial language
of automata, relying on the notion of wreath recursion. It allowed me to obtain transparent,
simple, and at the same time quite universal constructions of finite topological generating sets
for these wreath products. In particular, I obtained the results in the following topics:

• constructing minimal and almost minimal automata for wreath products of the form
≀∞i=1Gi,

• the study of algebraic and geometric properties of groups generated by the constructed
sets/automata,

• characterization of those sequences (Gi, Xi)i≥1 for which the wreath product ≀∞i=1Gi is
generated by a single automaton over the alphabet X = (Xi)i≥1.

The papers [H1]–[H8] contain the solutions of the following problems:

• construction of a minimal Mealy automaton for the infinite wreath power of a nontrivial
group (in particular, for the infinite wreath power of an arbitrary alternating group Alt(n)
of degree n ≥ 5) ([H5]),

• obtaining a universal almost minimal automaton realization for wreath products ≀∞i=1Hi

of finite non-abelian simple groups; the study of algebraic and geometric properties of the
group generated by the constructed automaton ([H6]),

• computation of the ranks of arbitrary wreath products ≀∞i=1Ai of finite abelian groups,
and the construction of finite topological generating sets for these wreath products ([H1],
[H2], [H4]),

• introducing the notion of a homogeneous automorphism and its crack, and construction
(on basis of these two types of automorphisms) of a universal topological decomposition
of the wreath product ≀∞i=1Ai of finite abelian groups into two isomorphic abelian free
groups; investigating the group generated by the union of these two abelian free groups
([H3]),

• obtaining a general condition for amenability of groups generated by an arbitrary set of
homogeneous automorphisms and their cracks ([H8]),

• characterization of those sequences (Gi, Xi)i≥1 of transitive permutation groups for which
the wreath product ≀∞i=1Gi is generated by a single automaton over the alphabet X =
(Xi)i≥1; obtaining an explicit and universal automaton realization for every such a se-
quence and finding (by using this realization) the upper bound for the rank of the group
≀∞i=1Gi and for the number of states in the corresponding optimal automaton ([H7]),

• characterization of those sequences (Gi)i≥1 of transitive permutation groups on a finite
set X for which the wreath product ≀∞i=1Gi is generated by a Mealy automaton over X
([H7]).
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The constructions from the papers [H2] and [H6] are universal enough to use them for arbi-
trary sequences (Hi, Xi)i≥1 of non-abelian transitive simple groups and for arbitrary sequences
(Ai, Xi)i≥1 of abelian transitive groups for which the wreath product ≀∞i=1Ai is topologically
finitely generated. Besides, in the case of non-abelian groups, the constructed set is always
minimal, and in the case of abelian groups the construction from the paper [H2] is minimal
provided that the group A1 is cyclic.

2.1 Automata for wreath powers of perfect groups – paper [H5]

The infinite wreath power ≀∞i=1H
(i) of a transitive permutation group (H,X) on a finite set

X is topologically finitely generated if and only if the group H is perfect ([15]). If we addi-
tionally assume that the action of H on X is not free, then the above described Bondarenko’s
construction gives a finite set S = {r1, . . . , rm, d1, . . . , dm} of topological generators for this
wreath power. If m := d(H), then every automorphism rj has exactly two sections: rj and
idX∗ , and every automorphism dj has three sections: dj, rj and idX∗ . Thus, it is possible to
construct a Mealy automaton A = (S, X, φ, ψ) with the (2m+ 1)-element set of states

S := {R1, . . . , Rm, D1, . . . , Dm, Id},

such that the equalities hold: R̃j = rj, D̃j = dj for 1 ≤ j ≤ m and Ĩd = idX∗ . The transition
and output functions in A can be formally defined as follows:

φ(Dj, x) =


Dj, x = x1,
Rj, x = x2,
Id, x ∈ X \ {x1, x2},

φ(Rj, x) = φ(Id, x) = Id,

ψ(Id, x) = ψ(Dj, x) = x, ψ(Rj, x) = hj(x)

for all 1 ≤ j ≤ m and x ∈ X. Obviously, the automaton A generates ≀∞i=1H
(i). It is not a

minimal automaton, because if H is simple, then |S| = 5 and d(≀∞i=1H
(i)) = 2. It is an open

question if there is a group H such that the above construction gives a minimal or optimal
automaton for the corresponding wreath power.

We solved in [H5] (sections 3–4) the problem of existence of a minimal automaton for the
infinite wreath power of a nontrivial group. We based the positive solution on completely
different types of automorphisms. For this purpose, we considered k-transitive (k ≥ 1) perfect
groups (H,X) which can be generated by two permutations such that one of them (denoted
by β) has all cycles of the same length in the decomposition into disjoint cycles, the number of
these cycles is equal to k, and each of these cycles contains a fixed point of the other generator
(denoted by α). Let X ′ ⊆ X be the set of all these fixed points.

Theorem 5 ([H5], Theorem 3) The Mealy automaton A = ({a, b}, X, φ, ψ) defined as fol-
lows:

φ(s, x) =

{
a, s = a, x ∈ X ′,
b, s = b otherwise,

ψ(a, x) = α(x), ψ(b, x) = α ◦ β(x),

generates the wreath power ≀∞i=1H
(i). In particular A is a minimal automaton for this wreath

power.

We used the above construction ([H5], Proposition 5) for the alternating groups, as for every
n ≥ 5, we have Alt(n) = ⟨αn, βn⟩, where

αn := (1, 2, 3), βn :=

{
(1, 2, . . . , n), 2 - n,
(1, 3, . . . , n− 1) ◦ (2, 4, . . . , n), 2 | n.
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The observation that αn and βn generate Alt(n) was derived in [P4] (the description of [P4] is
given on p. 42).

By using the same reasoning as in ([H5], Proposition 5), we can extend the above construc-
tion to an arbitrary sequence (Alt(mi))i≥1 of alternating groups of degreemi ≥ 5. Consequently,
we obtain a minimal automaton for the subgroup Aute(X

∗) ≤ Aut(X∗) of alternating auto-
morphisms.

Theorem 6 If X = (Xi)i≥1 is a changing alphabet and |Xi| ≥ 5 for every i ≥ 1, then there
is a 2-state automaton A over X which generates the wreath product ≀∞i=1Alt(Xi). If we denote
Xi := {1, . . . ,mi} for i ≥ 1, then the automaton A can be defined as follows:

A = ({a, b}, (Xi)i≥1, (φi)i≥1, (ψi)i≥1),

where the transition and output functions are defined as follows:

φi(s, x) =


a, s = a, x = mi,
a, s = a, x = mi − 1, 2 | mi,
b, otherwise,

ψi(a, x) = αmi
(x), ψi(b, x) = αmi

◦ βmi
(x).

2.2 The method of wreath recursions – paper [H6]

To study the groups generated by automata from the papers [H3], [H5] and [H6], we use,
among others, the method of wreath recursions. In the case of Mealy automata, this is a popular
tool to study the groups generated by such automata. In [H6], we introduced the extension of
this method to arbitrary automata (i.e. to automata over a changing alphabet). However, for
the first time, we used this idea for the constructions from [D5] and [H3].

In the method of wreath recursions, we consider the i-th transition (i ≥ 1) of the automaton
A = (S,X, φ, ψ), that is the automaton

Ai := (S, (Xj)j≥i, (φj)j≥i, (ψ)j≥i).

Let us denote by (s)i the automaton transformation defined by the state s ∈ S of the automaton
Ai. In particular, we have si ∈ Aut(X∗(i)) (in the sequel, when considering some concrete
examples of automata A, we will simply write si instead of (s)i, and if A is a Mealy automaton,
then we will identify every its state s with the corresponding automaton transformation). Let
us denote

S := {s1, . . . , sk}, Xi := {xi,1, . . . , xi,mi
}, i ≥ 1. (3)

According to the definition of an automaton transformation, we can built the following infinite
sequence R = (Ri)i≥1 of finite systems Ri of wreath recursion of the generators

(s1)i, . . . , (sk)i ∈ Aut(X∗(i))

of the group G(Ai) generated by the automaton Ai:

Ri :


(s1)i = ((qi,1,1)i+1, (qi,1,2)i+1, . . . , (qi,1,mi

)i+1)πi,1,
(s2)i = ((qi,2,1)i+1, (qi,2,2)i+1, . . . , (qi,2,mi

)i+1)πi,2,
...

...
(sk)i = ((qi,k,1)i+1, (qi,k,2)i+1, . . . , (qi,k,mi

)i+1)πi,k,

i ≥ 1, (4)
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where qi,j,r := φi(sj, xi,r) ∈ S, πi,j := σsj ,i ∈ Sym(Xi) for 1 ≤ j ≤ k, 1 ≤ r ≤ mi. Conversely,
for every finite set of symbols S and a changing alphabet X = (Xi)i≥1, defined as in (3), the
sequence R = (Ri)i≥1 of finite systems of equations (4), where qi,j,r ∈ S, πi,j ∈ Sym(Xi),
defines uniquely an automaton A over the alphabet X = (Xi)i≥1 and with the set S as a set of
states. We denote such an automaton as a triple

A = (S,X,R),

and refer to the sequence R = (Ri)i≥1 as a system of wreath recursions of the automaton A.
If A is a Mealy automaton, then (Ai)i≥1 and (Ri)i≥1 are constant sequences, and we get just
one system of equations:

R :


s1 = (q1,1, q1,2, . . . , q1,m1)π1,
s2 = (q2,1, q2,2, . . . , q2,m1)π2,
...

...
sk = (qk,1, qk,2, . . . , qk,m1)πk,

where qj,r := φ(sj, x1,r), πj := σsj , 1 ≤ j ≤ k, 1 ≤ r ≤ m1.
For example, a (2m+1)-state Mealy automaton for the Bondarenko’s construction from the

previous section can be described by the following system R of wreath recursions (we assume
that the letters x1 and x2 are, respectively, in the first and the second positions in X):

R :



Id = (Id, Id, Id, . . . , Id),
R1 = (Id, Id, Id, . . . , Id)h1,
...

...
Rm = (Id, Id, Id, . . . , Id)hm,
D1 = (D1, R1, Id, . . . , Id),
...

...
Dm = (Dm, Rm, Id, . . . , Id),

whereas the minimal automaton A from Theorem 6 can be presented as the automaton

A = ({a, b}, X,R)

in which the system R = (Ri)i≥1 of wreath recursions is of the form

Ri :

{
ai = (bi+1, . . . , bi+1, ci+1, ai+1)αmi

,
bi = (bi+1, . . . , bi+1, bi+1, bi+1)αmi

◦ βmi
,

i ≥ 1,

where ci+1 :=

{
ai+1, 2 | mi,
bi+1, 2 - mi.

In the method of wreath recursions, we study the relations between the elements of the group
G(Ai) (i ≥ 1) and its sections. For this purpose, we consider these elements as the group-words
W over the corresponding generating set as an alphabet, and we use the combinatorial methods
for these group-words, involving the notion of the section W{w} at any word w ∈ X∗(i). To define
this notion, we consider the generating set

Si := {(s1)i, . . . , (sk)i}, i ≥ 1
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of the group G(Ai) as a basis of the free group F (Si) of rank k. Next, when considering the
equalities (4), we see that every group-word W ∈ F (Si) is a product of some of their left sides or
their inverses. Thus W defines uniquely a product of some of their right sides or their inverses.
Computing this product in accordance with the formulae (1)–(2), we obtain the relation

W = (V1, . . . , Vmi
)π

for some group-words Vr ∈ F (Si+1) (1 ≤ r ≤ mi) and a permutation π ∈ Sym(Xi). The
group-words Vr are defined uniquely by the group-word W and the system R = (Ri)i≥1. Thus,
these words are not usually reduced, which means that they may contain trivial subwords, that
is the words of the form (sj)

η
i+1(sj)

−η
i+1 (η ∈ {−1, 1}, 1 ≤ j ≤ k), as well as the words (sj)

η
i+1

defining the identity idX∗
(i+1)

(we do not exclude the trivial states in the automaton Ai+1). By
consecutive deleting in the word Vr (1 ≤ r ≤ mi) all these trivial subwords, we get a unique
and reduced form of this word, which we denote by V̂r and call the section of W at the letter
xi,r ∈ Xi (defined by the system R). We now define the section W{w} ∈ F (Si+|w|) of a group-
word W ∈ F (Si) at any word w ∈ X∗(i) recursively: W{ϵ} := Ŵ and W{vx} := (W{v}){x} for all
v ∈ X∗(i) and x ∈ Xi+|v|.

If a group-word W ∈ F (Si) defines an automorphism g ∈ Aut(X∗(i)), then for every w ∈ X∗(i)
the section W{w} ∈ F (Si+|w|) defines the automorphism g{w} ∈ Aut(X∗(i+|w|)). We also have

(WV ){w} = ̂W{w}V{w′}, (W
−1){w} = (W{w′′})

−1, (5)

for all W,V ∈ F (Si) and w ∈ X∗(i), where w′ := W (w), w′′ := W−1(w). Moreover, the relation
v ≺ w implies |W{w}| ≤ |W{v}|.

Definition 11 We call a group-word W ∈ F (S1) defining the neutral element in G(A) a
disappearing group-word, if there is n ≥ 0 such that W{w} = ϵ for every w ∈ Xn. We refer to
the smallest n with this property as the depth of W and denote it by λ(W ).

By (5), we get that the depth λ : F (S1) → {0, 1, 2, . . .} ∪ {∞} satisfies:

λ(W ) = λ(Ŵ ) = λ(W−1) = λ(U−1WU), λ(WV ) ≤ max{λ(W ), λ(V )} (6)

for all U, V,W ∈ F (S1). Obviously, not every group-word defining the neutral element in G(A)
must be disappearing. By the relations (6), we obtain:

Proposition 1 ([H6], Proposition 3) If the group G(A) generated by an automaton A =
(S,X,R) satisfies the following two conditions:

(i) every group-word in F (S1) defining the neutral element is disappearing,

(ii) there are disappearing group-words which have arbitrarily large depth,

then G(A) is not finitely presented.

Indeed, suppose, contrary, that there exists a finite set R ⊆ F (S1) of defining relations for
G(A). By (i), for any nonempty and reduced group-word W ∈ F (S1) defining an identity,
there are n ≥ 1 and Vi ∈ F (S1), Ui ∈ R ∪ R−1 (1 ≤ i ≤ n) such that W is freely equivalent
to V1U1V

−1
1 · . . . · VnUnV

−1
n . But then, from (6), we get: λ(W ) ≤ max1≤i≤n Ui ≤ L, where

L := maxU∈R U <∞, which contradicts (ii).
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The groups generated by automata over a fixed alphabet and satisfying (i) belong to the
larger class of groups (piecewise automatically presented groups) investigated by A. Erschler
([24]). She proved that if such a group has the Kazhdan (T) property, then it must be finite,
and if it is an amenable and finitely presented group, then it must be virtually abelian (i.e.
contains abelian subgroup of finite index).

In [H6], we introduced the notion of an automaton with a path-active nucleus (here, for
simplicity, we will call it an automaton with a nucleus). To this aim, for any subset T ⊆ F (S1),
we denote

T(i) := {W(i) : W ∈ T} ⊆ F (Si), i ≥ 1,

where W(i) ∈ F (Si) is obtained from the word W ∈ F (S1) by replacing every letter (sj)
η
1 with

(sj)
η
i (1 ≤ j ≤ k, η ∈ {−1, 1}).

Definition 12 An automaton A = (S,X,R) is called an automaton with a nucleus if there is a
finite set T ⊆ F (S1) (called a nucleus of the automaton) of nonempty and reduced group-words
which satisfies the following conditions:

(i) for every W ∈ F (S1) there is n ≥ 0 such that W{w} ∈ T(n+1) ∪ {ϵ} for all w ∈ Xn,

(ii) for every W ∈ T there is u = x1x2 . . . ∈ Xω such that for every i ≥ 1, we have:
W(i)(xi) ̸= xi, (W(i)){xi} = W(i+1) and (W(i)){x} = ϵ for x ∈ Xi \ {xi}.

Proposition 2 ([H6], Proposition 5) In a group generated by an automaton A = (S,X,R)
with a nucleus every group-word defining the neutral element is disappearing.

The notion of a nucleus for time-varying automata is analogous to the notion of a contraction
in the class of self-similar groups. In particular, every group generated by a Mealy automaton
with a nucleus must be contracting.

In the paper [H6], we also extended to time-varying automata the concepts of self-replication
and branching, which are well-known in the class of self-similar branch groups ([60]). We based
them on the observation that the equalities (4) define for every i ≥ 1 an embedding

Ψi,A : G(Ai) ↪→ G(Ai+1) ≀Xi
Sym(Xi),

which, in general, is not an isomorphism. Let us consider the restriction of the embedding Ψi,A

to the stabilizer of the first level, together with the projection Ψi,r,A : StabG(Ai)(1) → G(Ai+1)
on the r-th (1 ≤ r ≤ mi) coordinate.

Definition 13 If Ψi,r,A(StabG(Ai)(1)) = G(Ai+1) for all i ≥ 1 and 1 ≤ r ≤ mi, then the
automaton A is called self-replicating. If there is a sequence (Ki)i≥1 of finite index normal
subgroups Ki ▹ G(Ai) satisfying Kmi

i+1 ≤ Ψi,A(Ki) for every i ≥ 1, then the automaton A is
called regularly branch. If the groups Ki are only nontrivial, then A is called regularly weakly
branch.

In particular, if the automaton A is regularly branch and the group G(A) acts spherically
transitively, then this is a branch group (in a sense of Definition 6), and if A is regularly weakly
branch, then G(A) is a weakly branch group. If additionally A is a Mealy-type automaton,
then in the first case the group G(A) is regularly branch, and in the second case it is regularly
weakly branch (in a sense of Definition 7).

In [H6], we also introduced the notion of a nearly finitary automorphism and a nearly
finitary group.
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Definition 14 An automorphism g ∈ Aut(X∗) is called nearly finitary if there is n := ng ≥ 0
and a finite set T := Tg ⊆ Xω (perhaps empty) such that T ∩ Fix(g) = ∅, and the vertex
permutations σg,w are trivial for all words w ∈ X∗ of length greater than n which are not
a prefix of any word in T . If every element of a group G ≤ Aut(X∗) is a nearly finitary
automorphism, then we call G a nearly finitary group.

Proposition 3 ([H6], Proposition 4) If A = (S,X,R) is an automaton with a nucleus,
then G(A) is a nearly finitary group.

The set of all nearly finitary automorphisms of the tree X∗ contains properly the group
of finitary automorphisms, which in turn forms a dense subgroup of the group Aut(X∗) (an
automorphism g ∈ Aut(X∗) is called finitary if the vertex permutations σg,w are nontrivial for
at most finitely many vertices w ∈ X∗). However, the set of nearly finitary automorphisms does
not form a group (admittedly the inverse of a nearly finitary automorphism is a nearly finitary
automorphism but the composition of two such automorphisms need not be of this type). On
the other hand, the set of nearly finitary automorphisms is properly contained in the group of
bounded automorphisms of the tree X∗.

Definition 15 An automorphism g ∈ Aut(X∗) is called bounded if the sequence (ξg(n))n≥1 is
bounded, where ξg(n) := |{w ∈ Xn : g{w} ̸= idX∗

(n+1)
}|.

In 2010, V. Nekrashevych ([61]) showed that if the alphabet X = (Xi)i≥1 is bounded, then
the group of all bounded automorphisms does not contain non-abelian free subgroups (in the
case of an unbounded alphabet X, it is not difficult to construct a non-abelian free group in
the group of bounded automorphisms of the tree X∗). The proof was based on the following
alternative:

Theorem 7 (Nekrashevych, [61]) Let G be a group acting faithfully on an infinite locally
finite rooted tree T . Then one of the following holds:

(1) G does not contain non-abelian free subgroups,

(2) there is a non-abelian free group F ≤ G and an infinite path u starting in the root of
T such that F ⊆ StabG(u) and F acts faithfully on every neighborhood of u (i.e. on a
subtree of T which consists of all descendants of some prefix of u),

(3) there is an infinite path u starting in the root of T and a non-abelian free subgroup F ≤ G
such that the stabilizer StabF (u) is trivial.

We used the above alternative to show the following theorem.

Proposition 4 ([H6], Proposition 1) If X = (Xi)i≥1 is an arbitrary changing alphabet (bounded
or unbounded) and G ≤ Aut(X∗) is a nearly finitary group, then G does not contain non-abelian
free subgroups.

Remark 4 The method of wreath recursions, although quite useful, might be insufficient even
towards very simple automata. For example, if we take the group generated by a 2-state Mealy
automaton A = ({a, b}, {1, 2, 3},R) with the following system of wreath recursions

R :

{
a = (a, b, a)(1, 2, 3),
b = (a, a, b)(1, 2),
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then we even do not know whether G(A) is finite (it is supposed that this is an infinite group).
The above automaton (denoted by M675) appears in the classification of groups generated by
a 2-state Mealy automaton over a 3-letter alphabet ([59]).

2.3 The automaton A and the group G(A) – cont. of [H6]

Let X = (Xi)i≥1 be a changing alphabet. The main result of the paper [H6] is the universal
construction of an almost minimal automaton for the wreath product ≀∞i=1Hi, where (Hi, Xi)i≥1
is an arbitrary sequence of non-abelian simple transitive permutation groups. The construction
is based on the observation that if (H, Y ) is a non-abelian simple transitive permutation group
on a finite set Y , then there is a triple (α, β, y) ∈ H ×H × Y (which we called a hooked triple)
satisfying the following conditions: H = ⟨α, β⟩, o(α) = 2, o(β) = p for some prime number
p ≥ 3, and in the decompositions of the permutations α and β into the products of disjoint
cycles, there are two nontrivial cycles, one in the decomposition of α and the second in the
decomposition of β, such that y is the only common element in both these cycles. First of
all, note that the existence of such a triple (α, β, y) follows directly from the existence of the
elements α, β ∈ H satisfying the following two conditions:

(i) H = ⟨α, β⟩, o(α) = 2, o(β) = p for some prime p ≥ 3,

(ii) p < |Y |.

Indeed, let us take the permutations α, β ∈ H satisfying (i)–(ii), and consider their decomposi-
tions α = τ1 · . . . · τs, β = σ1 · . . . · σt into the products of nontrivial disjoint cycles. Then there
is a transposition τj0 which has exactly one common element (denote it by y) with a cycle σk0
for some 1 ≤ k0 ≤ t (otherwise the support of every τj either would be contained in Fix(β)
or it would be contained in the support of some σj′ , but then, by (ii), the group H = ⟨α, β⟩
would not be transitive). Consequently (α, β, y) is a hooked triple. The observation that there
are elements α, β ∈ H satisfying (i) is the main result due to C. S. H. King ([49]). Let us show
that the elements α, β can be chosen in such a way that also the condition (ii) is satisfied. So,
let us choose α, β ∈ H satisfying (i) and let us assume that the prime number p = o(β) ≥ 3 is
possible minimal. We obviously have |Y | ≥ 5 and |Y | ≥ p. If 2 | |Y |, then p < |Y |. Thus, we
can assume that 2 - |Y |. Suppose contrary that p = |Y |. Then β is a long cycle (i.e. a cycle of
length |Y |). We use the following lemma:

Lemma 1 ([H6], Lemma 1) Every finite simple permutation group with a long cycle is a
primitive group.

There is a classification of primitive permutation groups containing a long cycle (below, we
use the standard notation for the general affine group AGLk(q) of degree k over a q-element
field, the projective general linear group PGLk(q), the projective semilinear group PΓLk(q),
the projective special linear group PSLk(q), and the Mathieu groups M11 and M23):

Theorem 8 ([44]) If G is a primitive group of degree m containing a cycle of length m, then
one of the following holds:

• G ≤ AGL1(m), where m is a prime number,

• G = Alt(m) or G = Sym(m),
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• PGLk(q) ≤ G ≤ PΓLk(q), where k ≥ 2, q is a prime number and m = (qk − 1)/(q − 1),

• m = 11 and G = PSL2(11) or G =M11,

• m = 23, G =M23.

In above, if m := p is a prime number, then AGL1(m) contains a cyclic group of order m, which
is a normal subgroup. Besides of that the group PGLk(q) is a normal subgroup of PΓLk(q)
and PGLk(q) is simple if and only if GCD(k, q − 1) = 1 and (k, q) ̸= (2, 2), which implies
PGLk(q) = PSLk(q). Since H is non-abelian and simple, we obtain the following possibilities:

• H = Alt(p), or

• p = 23 and H =M23, or

• p = 11 and H =M11, or

• p = 11 and H = PSL2(11), or

• p = (qk − 1)/(q − 1) and H = PSLk(q), where k ≥ 2 and q is a prime power satisfying
GCD(k, q − 1) = 1.

Now, it is enough to observe that the group PSL2(11) and the groups Alt(p) for p ̸= 7, as well
as the groups PSLk(q) with k and q as above are generated by an involution and an element
of order 3; and the groups Alt(7), M11 and M23 are generated by an involution and an element
of order 5 ([49, 66]). In every case, we obtain a contradiction with the assumption that p is
minimal.

Fore every i ≥ 1 let us take an arbitrary hooked triple

(αi, βi, xi) ∈ Hi ×Hi ×Xi,

and let us consider a 3-state automaton A = ({a, b, id}, (Xi)i≥1, (Ri)i≥1) with the following
system R = (Ri)i≥1 of wreath recursions:

Ri :


ai = (ai+1, idi+1, . . . , idi+1)αi,
bi = (bi+1, idi+1, . . . , idi+1)βi,
idi = (idi+1, idi+1, . . . , idi+1),

i ≥ 1, (7)

where above, we assume the orderings of the alphabets Xi (i ≥ 1) in such a way that the letter
xi ∈ Xi from the triple (αi, βi, xi) occurs in the first position.

First of all, observe that in spite of the fact that the nontrivial vertex permutations of the
automorphisms ã and b̃ are placed along the infinite word x1x2x3 . . . ∈ Xω, these automorphism
are not directed, as they do not fix this word.

Theorem 9 ([H6], Theorem 1) The transformations ã, b̃ ∈ Aut(X∗) defined by the states a
and b of the automaton A topologically generate the wreath product ≀∞i=1Hi. In particular A is
an almost minimal automaton for the wreath product ≀∞i=1Hi.

For the proof, we consider the i-th transition Ai = ({a, b, id}, (Xl)l≥i, (Rl)l≥i) of the au-
tomaton A. We obviously have G(Ai) = ⟨ai, bi⟩ ≤ Wi for every i ≥ 1, where Wi := ≀∞l=iHl.
For i, j ≥ 1 let Wi,j ≤ Wi be the subgroup obtained from Wi by replacing the vertex permu-
tations σg,w (g ∈ Wi) at the vertices w ∈ X∗(i) with |w| ≥ j by the trivial permutations. Let
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ai,j, bi,j ∈ Wi,j be elements obtained in this way from the generators ai, bi ∈ Wi. We need to
show the equality ⟨ai,j, bi,j⟩ = Wi,j for all i, j ≥ 1. We use induction on j. For j = 1, we have:
Wi,1 = Hi = ⟨αi, βi⟩ = ⟨ai,1, bi,1⟩ for all i ≥ 1. Let us assume that there is j0 ≥ 1 such that
Wi,j0 = ⟨ai,j0 , bi,j0⟩ for every i ≥ 1. Let us choose arbitrarily i0 ≥ 1, and denote g := ai0,j0+1,
g′ := ai0+1,j0 , h := bi0,j0+1, h′ := bi0+1,j0 , id := idi0+1, α := αi0 , β := βi0 . By (7), we have:{

g = (g′, id, . . . , id)α,
h = (h′, id, . . . , id)β.

(8)

Thus, we need to show that the group Wi0,j0+1 is contained in the group G := ⟨g, h⟩ (the
converse inclusion is obvious). We obviously have Wi0,j0+1 = Wi0+1,j0 ≀Xi0

Hi0 = W
Xi0
i0+1,j0

oHi0 ,
and, by the inductive assumption, we get Wi0+1,j0 = ⟨g′, h′⟩. Since Wi0+1,j0 is perfect, for every
f ∈ Wi0+1,j0 , there is a group-word V (x, y) ∈ F (x, y) in which vanish the sums of exponents on
the letters x and y, as well as the equality f = V (g′, h′) is satisfied. Let us compute the wreath
recursion of the element V (g2, hpi0 ) ∈ G. By wreath recursions (8) and the construction of the
hooked triple (α, β, xi0), we get V (g2, hpi0 ) = (f, id, . . . , id). Thus (f, id, . . . , id) ∈ G. Since f
was chosen arbitrarily, we also get: (g′, id, . . . , id) ∈ G and (h′, id, . . . , id) ∈ G. Consequently,
by (8), we get: α, β ∈ G, and hence Hi0 ≤ G. Since the group Hi0 is transitive, we also get
W

Xi0
i0+1,j0

≤ G. Hence, we obtain Wi0,j0+1 ≤ G, and the inductive argument finishes the proof.
In [H6], we also derived the following result:

Proposition 5 ([H6], Propositions 8, 10) The automaton A is an automaton with a 6-
element nucleus

T = {a1, a−11 , b1, b
−1
1 , a−11 b1, b

−1
1 a1}.

In particular, every group-word W ∈ F ({a1, b1, id1}) defining the neutral element in the group
G(A) is disappearing. Moreover, there are disappearing group words W ∈ F ({a1, b1, id1}) with
an arbitrary large depth.

For the proof of the second part of Proposition 5, we construct for every i ≥ 1 the group-
words on the letters ai and bi of the form:

WM,N,i := [bNi a
−M
i b−Ni , aNi ] := bNi a

M
i b
−N
i a−Mi bNi a

−M
i b−Ni aMi ,

where the exponents M and N satisfy: 2 | M and pi | N , where pi := o(βi). Next, we show
that WM,N,i(x) = x for every x ∈ Xi, and compute the corresponding one-letter sections:

(WM,N,i){x} =

{
WM/2,N/pi,i+1, x = xi,
ε, x ̸= xi.

By above, we obtain that for every i ≥ 1 the group-word W2i+1,p1p2...pi,1 is disappearing and its
depth is equal to i+ 1. As a result of Propositions 1–5, we obtain:

Theorem 10 ([H6], Theorems 2, 3) G(A) is a nearly finitary not finitely presented group
without non-abelian free subgroups.

Proposition 5 can be also used to show that the semigroup generated by the maps ã and b̃
is free ([H6], Proposition 9). Indeed, let W ∈ F ({ai, bi}) (i ≥ 1) be a reduced semigroup-word
(i.e. without negative exponents). By induction on the length of W , we show on basis of the
wreath recursions (7) that if W begins with ai (resp. with bi), then the section W{xi} (which is
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a reduced semigroup-word in the letters ai+1 and bi+1) begins with ai+1 (resp. with bi+1). Since
the only semigroup-words in the nucleus T of the automaton A are a1 and b1, we conclude that
if W ∈ F ({a1, b1}) is a reduced semigroup-word which begins with a1 (resp. with b1), then
there is i ≥ 1 such that W{x1...xi} = ai+1 (resp. W{x1...xi} = bi+1). Since ai ̸= bi for every i ≥ 1,
we conclude that arbitrary two distinct and reduced semigroup-words in the letters a1 and b1
can not define the same transformation (we may assume that one of these semigroup-words
begins with a1 and the second with b1, or one is empty and the second is nonempty), thus the
semigroup sgp(ã, b̃) is free. As a corollary, we obtain the following result:

Corollary 1 ([H6], Corollary 4) The group G(A) generated by the automaton A has an
exponential growth.

We have also shown that the automaton A is self-replicating and regularly weakly branch
over the sequence (G(Ai)

′)i≥1 of commutator subgroups.

Proposition 6 ([H6], Proposition 12) The automaton A is self-replicating and regularly
weakly branch over the sequence (G(Ai)

′)i≥1 of commutator subgroups. In particular, the group
G(A) is weakly branch.

If the sequence (Hi, Xi)i≥1 is constant, then A is a Mealy automaton. In addition, this is a
bounded automaton, that is every its state defines a bounded automorphism. The concept of
boundedness for Mealy automata was studied by S. Sidki ([71]) in 2000. The groups generated
by a bounded Mealy automaton form a subclass in the class of self-similar contracting groups.
Although the problem of amenability for groups from this wider class is still open, it was proved
([7]) that groups generated by a bounded Mealy automaton are amenable. Consequently, we
obtain the following corollary:

Corollary 2 ([H6], Corollary 2) For the infinite wreath power ≀∞i=1H
(i) of an arbitrary non-

abelian simple transitive group H on a finite set X there is an almost minimal automaton
realization by a 3-state bounded Mealy automaton A over X. The group G(A) generated by this
automaton is an amenable not finitely presented nearly finitary group of exponential growth, and
its two generators corresponding to nontrivial states of A generate a free semigroup. Moreover,
the group G(A) is self-replicating contracting and regularly weakly branch over its commutator
subgroup.

2.4 Generation of wreath products of abelian groups – papers [H1, H2, H4]

In my PhD Thesis, I showed (the paper [D5]) that the wreath products ≀∞i=1Cni
of finite

transitive cyclic groups Cni
with a pairwise coprime orders, that is satisfying the condition

GCD(ni, nj) = 1 for i ̸= j, are topologically 2-generated. The proof was based on the con-
struction of a minimal automaton (i.e. a 2-state automaton) for such a wreath product. After
defending, I wondered about extending this result to wreath products ≀∞i=1Cni

of arbitrary finite
transitive cyclic groups, and I wanted to find the formula for the rank of such a wreath product.
I still do not know if there exists the construction of a minimal automaton, but, in the paper
[H1], I discovered the formula for the rank of an arbitrary wreath product of this form, as well
as I constructed the corresponding minimal topological generating set (the formula is partly a
consequence of this construction).
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Theorem 11 ([H1], Theorem 1.1) Let (ni)i≥1 be an arbitrary sequence of positive integers
greater than 1. Then d(≀∞i=1Cni

) = d(
∏

i≥2Cni
) + 1.

Note that the right side of the above equality is equal to the smallest integer k0 such that
the greatest common divisor of an arbitrary k0-element subsequence of the sequence (ni)i≥2 is
one. Thus Theorem 11 can be used to determine the ranks of finitely iterated wreath products
of the form ≀mi=1Cni

(m ≥ 1). In particular, we obtain the estimation d(≀mi=1Cni
) ≤ m, and the

equality holds if and only if GCD(n2, . . . , nm) > 1. In addition, for every m ≥ 2 there is an
infinite sequence (ni)i≥1 such that d(≀∞i=1Cni

) = m. For example, as n1 we can take an arbitrary
integer greater than 1 and as ni (i ≥ 2) we can take the product pipi+1 . . . pi+m−2, where (pi)i≥2
is an arbitrary sequence of pairwise different primes.

Let us denote ρ := d(
∏

i≥2Cni
) and assume ρ < ∞ (if ρ = ∞, then obviously d(≀∞i=1Cni

) =
∞). The proof of Theorem 11 is based on the construction of a (ρ+ 1)-element set

S := {β, α1, . . . , αρ}

of topological generators for the wreath product ≀∞i=1Cni
. For this construction, we consider

≀∞i=1Cni
as an automorphism group of the tree X∗ over a changing alphabet X = (Xi)i≥1 such

that |Xi| = ni for every i ≥ 1. We define β as a rooted automorphism generating the cyclic
group Cn1 . The automorphisms αj (1 ≤ j ≤ k) are defined as follows: for the groups Cni

(i ≥ 2), we choose ρ-element generating sets {a1,i, . . . , aρ,i} ⊆ Cni
satisfying the condition:

GCD(o(aj,i), o(aj,i′)) = 1 for all 1 ≤ j ≤ ρ and i ̸= i′. The existence of these sets, and
their construction, were derived in ([H1], Lemma 3.1). Next, for every i ≥ 1, we choose two
letters xi, yi ∈ Xi, and define αj, by its vertex permutations, as follows: σαj ,wi

:= aj,i+1 for
i ≥ 1 and σαj ,w := idX|w|+1

for w /∈ {w1, w2, . . .}, where wi := x1 . . . xi−1yi. In particular, each
automorphism αj is 1-directed and the word x1x2x3 . . . ∈ Xω is its direction.

We divide the main burden of the proof of Theorem 11 into several lemmas ([H1], Lemma 3.2–
3.5), which show that the set S indeed topologically generates the wreath product ≀∞i=1Cni

. To
this aim, we show at first that for every n ≥ 0 the group ⟨S⟩ acts transitively on the level n of
the tree X∗ (induction on n). Fix N ≥ 0. Then by the assumption GCD(o(aj,i), o(aj,i′)) = 1
for 1 ≤ j ≤ ρ, i ̸= i′, we can use the Chinese remainder theorem to construct for any 1 ≤ i ≤ N
and γ ∈ Cni

an element g := g(i, γ) ∈ ⟨S⟩ which satisfies: σg,wi−1
= γ and σg,w = idX|w|+1

for
w ∈ X≤N \ {wi−1} (we denote by X≤N the set of words of length not greater than N , we also
define w0 := ϵ). Next, for every w ∈ X≤N we consider the subtree Vw ⊆ X≤N of all words
having w as a prefix. By using the construction of the elements g(i, γ), as well as the fact that
⟨S⟩ acts spherically transitively, we construct for every w ∈ X≤N and γ ∈ Cn|w|+1

an element
h := h(w, γ) ∈ ⟨S⟩ such that σh,w = γ and σh,v = idX|v|+1

for all v ∈ X≤N \ Vw. Next, we fix an
arbitrary word w ∈ X≤N and for any v ∈ Vw, we choose arbitrarily γv ∈ Cn|v|+1

. On basis of
the elements h(v, γv), we construct the element fw ∈ ⟨S⟩ such that σfw,v = γv for v ∈ Vw and
σfw,v = idX|v|+1

for v ∈ X≤N \ Vw. For the construction of fw, we use the backward induction
on |w|. Namely, if |w| = N , then Vw = {w} and we define fw := h(w, γw). Next, we inductively
assume that for some 1 ≤ i ≤ N the required element fw can be constructed for every word w
satisfying i ≤ |w| ≤ N . Finally, on basis of the constructed elements, we construct fw for every
w ∈ X i−1. If we now take w := ϵ, then we have Vw = Vϵ = X≤N . Thus, sine N was chosen
arbitrarily, we obtain that S topologically generates the wreath product ≀∞i=1Cni

.
For the proof that S is a minimal set, i.e. |S| = d(≀∞i=1Cni

), we use the Lucchini’s formulae
obtained in 1997 from the algebraical method due to W. Gaschütz relying on the knowledge of
the structure of irreducible G-modules for a finite solvable group G.
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Theorem 12 (Lucchini, [55]) If (G,X) is a transitive permutation group on a finite set X
nad H is a finite solvable grup, then

d(H ≀X G) = max

(
d(H/H ′ ≀X G),

[
d(H)− 2

|X|

]
+ 2

)
.

Theorem 13 (Lucchini, [55]) If (G,X) is a nilpotent transitive permutation group on a fi-
nite set X and A is a finite abelian group, then

d(A ≀X G) = max
p

{d(A×G), d(A) + 1, dp(A) + 2},

where p runs over the set of primes dividing the order of A for which the group G is not
p-solvable, and dp(A) denotes the rank of a Sylow p-subgroup of the group A.

To show that S is minimal, it is enough to show the inequality d(≀∞i=1Cni
) ≥ ρ + 1. For

this purpose, we observe that there is i0 ≥ 1 such that d(A) = ρ = d(
∏∞

i=2Cni
), where

A :=
∏i0

i=2Cni
. Moreover, the group H := ≀i0i=2Cni

is solvable and H/H ′ ≃ A. Thus, for
the wreath product W := H ≀X1 Cn1 (which is a homomorphic image of ≀∞i=1Cni

), we get by
Theorems 12–13:

d(≀∞i=1Cni
) ≥ d(W ) ≥ d(H/H ′ ≀X1 Cn1) = d(A ≀X1 Cn1) ≥ d(A) + 1 = ρ+ 1.

In [H4], we investigated the set S = {α1, . . . , αρ, β} as a set of automaton transformations.
We have observed that for any non-zero level of the tree X∗ the sections of the automorphism
β at the words in this level are all trivial, and every transformation αj (1 ≤ j ≤ ρ) has at
most three distinct sections, and one of them is also trivial. Thus β can be defined by using
only one state, and for each automorphism αj we need only two more states – we do not need
new states for the trivial sections of αj, as we can tie every such a section together with the
corresponding trivial section of the automorphism β. Consequently, we obtain a (2ρ+ 1)-state
automaton, which generates the wreath product ≀∞i=1Cni

. Admittedly, this construction does
not provide a minimal automaton (and probably nor even an optimal automaton), but it allows
to characterize the wreath products ≀∞i=1Cni

as groups generated by an automaton.

Theorem 14 ([H4], Theorem 1) Let X = (Xi)i≥1 be a changing alphabet; denote ni := |Xi|
for i ≥ 1. The following are equivalent:

(i) the wreath product ≀∞i=1Cni
is generated by an automaton over X,

(ii) the wreath product ≀∞i=1Cni
is topologically finitely generated.

If the sequence (ni)i≥1 consists of distinct primes, then ρ = 1 and S = {β, α1}. E. Fink
([25]) derived in this case some algebraic and geometric properties of the group G = ⟨S⟩. It
turns out that even in this simplest case, we do not know whether or not G contains non-abelian
free semigroups.

Theorem 15 (Fink, [25]) If (ni)i≥1 is a sequence of distinct primes, then the group G =
⟨β, α1⟩ has the following properties:

(i) G is a branch group, but it does not have the congruence subgroup property, and every
normal subgroup K ▹ G is finitely generated,
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(ii) the abelianization G/G′ is isomorphic to Cn1 × C∞; in particular G is not just-infinite,

(iii) G is not solvable, but every proper quotient G/K is a solvable group,

(iv) G does not have the polynomial growth, and if ni > c(2+i)·3i+1+1 for some constant c > 1,
then G is of exponential growth, but if ni > 36i, then G does not contain non-abelian free
subgroups.

In the paper [H2], we have extended the ideas and the methods from [H1] to the wreath
product ≀∞i=1Ai, where (Ai, Xi)i≥1 is an arbitrary sequence of abelian transitive permutation
groups on finite sets Xi. We have observed that the rank d(≀∞i=1Ai) can be computed on basis of
the Lucchini’s formulae. By induction on n ≥ 1, we derived from Theorems 12–13 the following
formula:

d(≀ni=1Ai) = max

{
d(

n∏
i=1

Ai), 1 + d(
n∏

i=2

Ai)

}
, n ≥ 1.

Note that all the three sequences (d(≀ni=1Ai))n≥1, (d(
∏n

i=1Ai))n≥1 and (1 + d(
∏n

i=2Ai))n≥1 sta-
bilize, or all of them diverge to infinity ([68], Lemma 2.5.3). As a result, we obtain the formula
for d(≀∞i=1Ai).

Theorem 16 ([H2], Theorem 1.1) For any sequence (Ai, Xi)i≥1 of abelian transitive per-
mutation groups on finite sets Xi the following equality holds:

d(≀∞i=1Ai) = max

{
d(
∞∏
i=1

Ai), 1 + d(
∞∏
i=2

Ai)

}
.

Further, we have obtained a more general criterion for the topological generation of wreath
products of abelian groups, which we based on rooted and directed automorphisms. To this
aim, we introduce the notion of a mutually coprime automorphism.

Definition 16 An automorphism g ∈ Aut(X∗) is called mutually coprime, if for any two
vertices w and v from distinct levels of the tree X∗ the vertex permutations σg,w and σg,v are
of coprime orders: GCD(o(σg,w), o(σg,v)) = 1.

Proposition 7 ([H2], Proposition 4.5) Let X = (Xi)i≥1 be a changing alphabet and let
R ⊆ Aut(X∗) be an arbitrary set of rooted automorphisms and D ⊆ Aut(X∗) – an arbitrary
(finite or infinite) set of 1-directed mutually coprime automorphisms. Let us denote S := R∪D
and let VS,i ≤ Sym(Xi) (i ≥ 1) be the vertex groups of the set S, defined as follows:

VS,i := ⟨σg,w : g ∈ S,w ∈ X i−1⟩.

If all the groups VS,i are abelian and transitive, then the set S topologically generates their
wreath product: ⟨S⟩ = ≀∞i=1VS,i.

Conversely, let (Ai, Xi)≥1 be an arbitrary sequence of abelian transitive permutation groups
on finite sets Xi (|Xi| ≥ 2). Denote ρ := d(

∏∞
i=2Ai) and assume ρ <∞.

Lemma 2 ([H2], Lemma 5.1) For every i ≥ 2, there is a ρ-element generating set

{σ1,i, . . . , σρ,i}

of the group Ai such that GCD(o(σj,i), o(σj,i′)) = 1 for all 1 ≤ j ≤ ρ and i ̸= i′.
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On basis of the generating sets from the above lemma, we constructed 1-directed automor-
phisms d1, . . . , dρ ∈ Aut(X∗) in such a way that for 1 ≤ j ≤ ρ the only potentially nontrivial
vertex permutation of dj at the vertex in the i-th level (i ≥ 1) of the tree X∗ is equal to
σj,i+1. Denote D := {d1, . . . , dρ}. We also constructed the set R consisting of d(A1) rooted
automorphisms, which generates the group A1. In particular, for the vertex groups VS,i of the
set

S := R ∪D,

we have: VS,i = Ai for every i ≥ 1. Since the automorphisms dj are mutually coprime, we
obtained by Proposition 7 that S topologically generates the wreath product ≀∞i=1Ai. If the
group A1 is cyclic, then by Theorem 16, we obtained that S is minimal, i.e. |S| = d(≀∞i=1Ai).

Theorem 17 ([H2], Theorem 1.2) If the group A1 is cyclic, then the above constructed set
S = R ∪ D is a minimal topological generating set of the wreath product ≀∞i=1Ai, that is |S| =
d(≀∞i=1Ai).

By analogy to the case of cyclic groups, we can use the set S = R ∪ D and obtain an
automaton generating the wreath product ≀∞i=1Ai. Obviously, this construction does not provide
a minimal automaton.

Corollary 3 Let us denote n := d(A1) + 2ρ. Then there is an n-state automaton A over the
alphabet X = (Xi)i≥1 which generates the wreath product ≀∞i=1Ai.

2.5 Topological decomposition into abelian free groups – paper [H3]

In the paper [H4] (described in the previous section), we have constructed (on basis of
rooted and directed automorphisms) the topological decompositions of wreath products ≀∞i=1Ai

of finite abelian groups into two finitely generated abelian groups, the first being finite (that
generated by rooted automorphisms) and equal to A1, and the second (that generated by 1-
directed automorphisms) being infinite (however, from that construction it is not possible to
determine the corresponding canonical decomposition into a direct product of cyclic groups).

In general, we say that a group G ≤ Aut(X∗) decomposes topologically over two its subsets,
if the groups generated by these subsets intersect trivially, and the union of these sets generates
a dense subgroup of G.

Let X = (Xi)i≥1 be a changing alphabet and let (Ai, Xi)i≥1 be an arbitrary sequence of
abelian transitive permutation groups such that the rank

ρ := d(
∏
i≥1

Ai)

is finite (equivalently: d(≀∞i=1Ai) < ∞). In the paper [H3], we found a natural topological
decomposition of the wreath product ≀∞i=1Ai into two isomorphic abelian free groups of rank ρ.
For this, we introduced the notion of a homogeneous automorphism and the notion of a crack
of an automorphism.

Definition 17 An automorphism g ∈ Aut(X∗) is called homogeneous, if for every level of
the tree X∗ the vertex permutations σg,w at the vertices w in this level coincide (but vertex
permutations at the vertices in distinct levels may differ).
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Definition 18 An automorphism h ∈ Aut(X∗) is called a crack of an automorphism g ∈
Aut(X∗) with a cracking path u ∈ Xω if the portrait of h coincides with the portrait of g
except the vertex permutations σh,w at the vertices w which are prefixes of u, where these
vertex permutations are all trivial.

A system consisting of a homogeneous automorphism and its crack can be described by a
2-state automaton A = ({a, b}, X,R), in which the wreath recursions Ri (i ≥ 1) are of the
form:

Ri :

{
ai = (ai+1, ai+1, . . . , ai+1)πi,
bi = (bi+1, ai+1, . . . , ai+1),

where πi ∈ Sym(Xi) (above, we assume the orderings of the alphabets Xi for which the
letters from the corresponding cracking path of the automorphism b̃ ∈ Aut(X∗) are in the first
positions).

Proposition 8 ([H3], Proposition 3.5) Let S ⊆ Aut(X∗) be a set of mutually coprime ho-
mogeneous automorphisms and for every s ∈ S let š denotes an arbitrary crack of s. If the vertex
groups VS,i ⊆ Sym(Xi) (i ≥ 1) are all abelian and transitive, then the union S ∪ {š : s ∈ S}
topologically generates the wreath product ≀∞i=1VS,i.

To use the above claim for the wreath product ≀∞i=1Ai, we constructed the set

S = {a1, . . . , aρ} ⊆ ≀∞i=1Ai,

which satisfies the conditions in the following proposition:

Proposition 9 ([H3], Proposition 4.1) There is a ρ-element set S ⊆ ≀∞i=1Ai of homogeneous
automorphisms, for which:

• S consists of mutually coprime automorphisms,

• the vertex group VS,i coincides with Ai for every i ≥ 1,

• the group generated by S is an abelian free group of rank ρ, that is ⟨S⟩ ≃ Cρ
∞; in particular,

the set S forms a basis for the group ⟨S⟩.

Now, let us consider an arbitrary infinite word

u0 := x1x2x3 . . . ∈ Xω

and for every 1 ≤ k ≤ ρ and i ≥ 1 let ak,i ∈ Aut(X∗(i)) be the section of the automorphism ak
at a word of length i− 1 (it does not signify which word we choose as the automorphism ak is
homogeneous) and let bk,i ∈ Aut(X∗(i)) be the crack of ak,i with the cracking path xixi+1xi+2 . . . ∈
Xω

(i). In particular ak,i is a homogeneous mutually coprime automorphism of the tree X∗(i). Let
us define the groups:

Hi := ⟨Sa,i⟩, Ki := ⟨Sb,i⟩, Gi := ⟨Sa,b,i⟩,
where

Sa,i := {a1,i, . . . , aρ,i}, Sb,i := {b1,i, . . . , bρ,i}, Sa,b,i := Sa,i ∪ Sb,i.

By Proposition 8, we get that the set Sa,b,1 topologically generates the wreath product ≀∞i=1Ai.
The required decomposition into two abelian free subgroups is defined by the following partition:
Sa,b,1 = Sa,1 ∪ Sb,1. In section 5 in [H3], we have derived this property as a property of the
group G1 = ⟨Sa,b,1⟩ together with another algebraic and geometric properties (actually, we have
derived them for all the groups Gi = ⟨Sa,b,i⟩, i ≥ 1), obtaining the following theorem:
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Theorem 18 ([H3], Theorem 5.1) For every i ≥ 1, we have:

(i) Gi can be presented as a semidirect product Gi = HGi
i o Ki = KGi

i o Hi, where HGi
i

denotes the normal closure of the group Hi in Gi,

(ii) the semigroup generated by the set Sa,b,i is a free product of the semigroups generated by
the sets Sa,i and Sb,i; in particular Gi is of exponential growth,

(iii) Gi/G
′
i ≃ C2ρ

∞ ; in particular d(Gi) = 2ρ,

(iv) Gi is a torsion-free, weakly branch, not finitely presented and centerless group without
non-abelian free subgroups.

For the proof, we consider the set Sa,b,1 as a set of states in the automaton B = (Sa,b,1, X,R)
with the following system of wreath recursions R = (Ri)i≥1:

Ri :



a1,i = (a1,i+1, a1,i+1, . . . , a1,i+1)σ1,i,
a2,i = (a2,i+1, a2,i+1, . . . , a2,i+1)σ1,i,
...

...
aρ,i = (aρ,i+1, aρ,i+1, . . . , aρ,i+1)σρ,i,
b1,i = (b1,i+1, a1,i+1, . . . , a1,i+1),
b2,i = (b2,i+1, a2,i+1, . . . , a2,i+1),
...

...
bρ,i = (bρ,i+1, aρ,i+1, . . . , aρ,i+1),

(9)

where σk,i := σak,i,ϵ is the vertex permutation of ak,i at the root of the corresponding tree.
In particular for every i ≥ 1, we have: Ai = ⟨σk,i : 1 ≤ k ≤ ρ⟩ and G(Bi) = Gi = ⟨Sa,b,i⟩,
where Bi is the i-th transition of the automaton B. In order to derive the above properties,
we use the combinatorial methods for the group-words U ∈ F (Sa,b,i) and their sections. To
this aim, we introduce the notion of an (a, i)-syllable, as an arbitrary group-word U ∈ F (Sa,i),
as well as the notion of a (b, i)-syllable, as a group-word U ∈ F (Sb,i). We call the syllable
U ∈ F (Sa,i)∪F (Sb,i) trivial, if it is an empty group-word ε, or it defines the neutral element in
Gi. In particular, the group Hi = ⟨Sa,i⟩ consists of all elements defined by the (a, i)-syllables
and the group Ki = ⟨Sb,i⟩ consists of all elements defined by the (b, i)-syllables.

Lemma 3 ([H3], Lemma 5.2) For every i ≥ 1, we have the isomorphisms Hi ≃ Ki ≃ Cρ
∞.

Corollary 4 ([H3], Corollary 5.3) The syllable U ∈ F (Sa,i) (resp. U ∈ F (Sb,i)) is trivial if
and only if for every 1 ≤ k ≤ ρ the sum of exponents on the letter ak,i (resp. on the letter bk,i)
in this syllable is equal to zero.

For every group-word U ∈ F (Sa,b,i) there is n ≥ 1 such that U = W1V1 . . .WnVn, where each
Wj is an (a, i)-syllable and each Vj is a (b, i)-syllable. If all the syllables Wj, Vj (1 ≤ j ≤ n)
are nontrivial (except, maybe, the case W1 = ε or Vn = ε), then U is called reduced. By using
the wreath recursions (9), we define the section U{w} ∈ F (Sa,b,i+|w|) at a word w ∈ X∗(i) in the
same way as it was described in section 2.2, remembering additionally about deleting the trivial
syllables at every time when the successive one-letter section appears. In particular U{w} is a
reduced group-word. For a reduced group-word U ∈ F (Sa,b,i), we denote by L(U) the number
of all nontrivial (b, i)-syllables in this word. Directly by (9), we get: L(U) ≥ L(U{w}) for every
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w ∈ X∗(i). Moreover, if L(U) = L(U{w}), then U{w} = U(i+|w|) (we use the notations from the
section 2.2, that is the group-word U(i+|w|) is obtained from U by replacing each aηk,i (1 ≤ k ≤ ρ,
η ∈ {−1, 1}) with aηk,i+|w| and each bηk,i with bηk,i+|w|).

Lemma 4 ([H3], Lemma 5.5, Lemma 5.6) If U ∈ F (Sa,b,i) is a reduced group-word and
L(U) > 1, then there is m ≥ 1 such that L(U) > L(U{w}) for every w ∈ Xm

(i); there is also
w ∈ X∗(i) such that L(U) = L(U{w}) > L(U{wx}) for every x ∈ Xi+|w|. In particular, for every
U ∈ F (Sa,b,i) there is M ≥ 1 such that L(U{w}) ≤ 1 for all w ∈ XM

(i).

By using induction on L(U) together with Corollary 4 and Lemma 4, we derive the following
proposition.

Proposition 10 ([H3], Proposition 5.7) If U ∈ F (Sa,b,i) defines the neutral element in Gi,
then for every letter from Sa,b,i the sum of exponents on this letter in U is equal 0.

By Proposition 10 and by Lemma 3, we obtain the isomorphism Gi/G
′
i ≃ C2ρ

∞ , which
implies: d(Gi) = 2ρ. We also obtain the decomposition of Gi into the semidirect products ([H3],
Theorem 5.1 (i)). For example, to show the equality Gi = HGi

i oKi, we have Gi = ⟨Hi ∪Ki⟩,
which implies that every element g ∈ Gi is of the form g′g′′ for some g′ ∈ HGi

i and g′′ ∈ Ki.
Thus, it is enough to show that the groups HGi

i and Ki intersect trivially, but this follows from
Proposition 10, as the group HGi

i is generated by elements of the form k−1hk for k ∈ Ki and
h ∈ Hi.

To show that Gi is torsion-free ([H3], Theorem 5.1 (iv)), we consider an arbitrary group-
word U ∈ F (Sa,b,i) which does not define the trivial automorphism. Let w = vx0 (v ∈ X∗(i),
x0 ∈ Xi+|v|) be the shortest word for which U(w) ̸= w. Denote t := |v|. For the section
U{v} ∈ F (Sa,b,i+t), we obviously have: U{v} = W1V1 . . .WnVn, where each Wj is an (a, i + t)-
syllable and each Vj is a (b, i+t)-syllable. Since U(v) = v and U(w) ̸= w, we have U{v}(x0) ̸= x0.
By the recursions (9), we see that for all 1 ≤ j ≤ n and x ∈ Xi+t the equality Vj(x) = x holds.
Thus, for the (a, i + t)-syllable W := W1 . . .Wn, we have: W (x0) = U{v}(x0) ̸= x0. Thus, by
Corollary 4, there is a letter from Sa,i such that the sum of exponents on this letter in the
syllable W is nonzero. Consequently, the sum of exponents on this letter in the whole word
U{v} is also nonzero. Hence, for any power (U{v})m (m ≥ 1) the sum of exponents on this letter
in this power is nonzero. But, in view of the equality U(v) = v, we have: (Um){v} = ̂(U{v})m,
that is the section (Um){v} is simply obtained from the power (U{v})

m by deleting the trivial
syllables. Thus, there is a letter such that for every m ≥ 1 the sum of exponents on this letter
in the section (Um){v} is nonzero, which, by Proposition 10, implies that the section (Um){v},
and consequently also the power Um, does not define the trivial automorphism.

It follows by Proposition 10 that the empty word is the only reduced group-word U which
defines the neutral element and satisfies the inequality L(U) ≤ 1. Thus, by Lemma 4 and by
the above observation that Gi is torsion-free, we obtain the following result.

Corollary 5 ([H3], Corollary 5.8) If a group-word U ∈ F (Sa,b,i) defines the neutral element
in Gi, then U is disappearing, that is there is N ≥ 0 such that for every w ∈ XN

(i) the section
U{w} is the empty group-word.

Lemma 5 ([H3], Lemma 5.9) There are group-words U ∈ F (Sa,b,i) defining the neutral ele-
ment and having arbitrarily large depth.
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As a result, we obtain that the group Gi is not finitely presented ([H3], Theorem 5.1 (vi)).
Next, from the following lemma, we obtain that Gi is centerless [H3], Theorem 5.1 (v)).

Lemma 6 ([H3], Lemma 5.10) For arbitrary U ∈ F (Sa,b,i), W ∈ F (Sa,i) and V ∈ F (Sb,i),
if the both group-words UWU−1W−1 and UV U−1V −1 define the neutral element in Gi, then at
least one of the group-words U , W or V defines the neutral element, or is the empty group-word.

To show that the group Gi does not contain non-abelian free subgroups ([H3], Theo-
rem 5.1 (vii)), we can prove that the commutator subgroup G′i is a nearly finitary group,
and use Proposition 4 ([H6], Proposition 1). However, the original proof in [H3] uses the previ-
ously quoted Nekrashevych’s alternative (Theorem 7) together with the amenability property
concerning the components of the Schreier graphs arising from the action of groups generated
by so-called almost finitary automorphisms ([61], Proposition 2.2).

Theorem 18 (iii) combined with the formula for the rank of the group ≀∞i=1Ai gives the natural
construction of groups which solve the following problem (see also [H3], p. 1266):

Problem 1 How much the rank d(G) of a group G generated by an automaton may differ
from the rank d(G) of its topological closure (in the automorphism group Aut(X∗) of the
corresponding tree X∗)?

Indeed, for the automaton B from our construction, we have d(G(B)) = 2ρ and G(B) =
≀∞i=1Ai. If we now define the groups Ai as follows: A1 := Cn

n1
, Ai := Cni

for i ≥ 2, where n > 1
and (ni)i≥1 is an arbitrary sequence of pairwise coprime numbers ni > 1, then we obtain the
automaton from the following claim.

Corollary 6 Let n > 1 be a natural number. Then there is a changing alphabet X = (Xi)i≥1
and an automaton A over X such that the group G := G(A) ≤ Aut(X∗) generated by this
automaton satisfies: d(G)− d(G) = n.

The above claim refers to the result due to G. A. Noskova ([64]), who investigated the
differences d(G)− d(Ĝ) for abstract residually finite groups G.

Theorem 19 (Noskov) For every n ≥ 1 there is a finitely generated metabelian group G for
which d(G)− d(Ĝ) ≥ n.

On the other hand, for polycyclic groups, we have the following result due to P. A. Linnel’a
and D. Warhursta ([52]):

Theorem 20 (Linnel, Warhurst) d(G)− d(Ĝ) ≤ 1 for every polycyclic group G.

The above two results suggest the further study of the group G(B) in the direction of
describing its finite index normal subgroups, which might allow to compare more efficiently the
topological closure G(B) with the profinite completion Ĝ(B). Obviously, we have d(G(B)) ≤
d(Ĝ(B)), as G(B) is a homomorphic image of Ĝ(B). In particular, it would be interesting to
know whether or not the group G(B) has the congruence subgroup property. If so, then we
would have the isomorphism G(B) ≃ Ĝ(B).
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2.6 Amenability – paper [H8]

In 2016, K. Juschenko, V. Nekrashevych and M. de la Salle ([45]) formulated a new amenabil-
ity condition for a wide class of groups acting by homeomorphisms on a topological space. As
one of the applications, they obtained the following amenability condition for the class of groups
generated by bounded automorphisms.

Theorem 21 (Juschenko, Nekrashevych, de la Salle, [45]) Let X = (Xi)i≥1 be a chang-
ing alphabet. If G ≤ Aut(X∗) is a group of bounded automorphisms for which the isotropy
groups Gu (u ∈ Xω) are all amenable, then G is also amenable.

The isotropy group Gu (u ∈ Xω) from the above theorem is defined as the quotient group
StabG(u)/NG,u, where NG,u consists of those automorphisms g ∈ StabG(u) which act trivially
on some neighborhood of u (i.e. on a set of the form wX∗(|w|+1) for some prefix w ≺ u).

It was also shown in [45] that the above criterion implies the amenability for various known
and previously studied groups generated by rooted and directed automorphisms, including
the Brieussell’s ([20]) constructions of dense subgroups in the wreath products of alternating
groups, as well as the constructions of dense subgroups in the wreath products of abelian groups
described in section 2.4 (including the special case studied by Fink). On the other hand, the
Segal’s construction of a dense subgroup in the wreath product ≀∞i=1PSL2(pi) gives te group
which is not amenable.

The following natural problem arises: is it possible to use Theorem 21 to formulate an
amenability criterion for groups generated by homogeneous automorphisms and their cracks?
We have found such a criterion in the paper [H8]. To this aim, we introduced the following
notion of singularity.

Definition 19 For a subgroup G ≤ Aut(X∗) and a word u ∈ Xω, we say that u is G-singular
if for every g ∈ G and every beginning w ∈ X∗ of u for which the section g{w} is non-trivial,
the action of this section on the corresponding suffix of u is also non-trivial (i.e. if u = wv and
g{w} ̸= idX∗

(|w|+1)
, then g{w}(v) ̸= v).

The main result of the paper [H8] is the following theorem:

Theorem 22 ([H8], Theorem 2.6) Let Γ ≤ Aut(X∗) be a group of homogeneous automor-
phisms and u ∈ Xω be an arbitrary Γ-singular word. Let Γ̃ be the group generated by the cracks
of elements from Γ with the cracking path u. Then the group G = ⟨Γ ∪ Γ̃⟩ is amenable if and
only if the group Γ is amenable.

For the proof, we use the notion of a nearly finitary group, which we introduced in [H6].
Next, we derive the following result:

Proposition 11 ([H8], Proposition 3.4) If G ≤ Aut(X∗) is a nearly finitary group, then
all its isotropy groups Gu (u ∈ Xω) are trivial.

Now, as a direct result of the above proposition and Theorem 21, we obtain:

Theorem 23 ([H8], Theorem 3.5) If G ≤ Aut(X∗) is a nearly finitary group, then G is
amenable.
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In one direction the criterion formulated in Theorem 22 directly follows from the known
property that the class of amenable groups is closed under taking subgroups. For the converse,
we constructed a nearly finitary normal subgroup K ▹G such that the quotient group G/K is a
homomorphic image of Γ and use the property that the class of amenable groups is closed under
taking extensions and homomorphic images. We also believe that Theorem 22 holds without
the singularity assumption on the cracking path u; however, when dropping this assumption,
we were not able to show that the constructed group K is a nearly finitary group.

We also used our criterion to the group

G := G1 = ⟨Sa,b,1⟩

constructed in the previous section, obtaining the following result (the same reasoning as in
the proof of the below theorem gives the amenability of all groups Gi = ⟨Sa,b,i⟩, i ≥ 1):

Theorem 24 ([H8], Theorem 2.7) The group G is amenable.

Theorem 23 can be used for the almost minimal automaton realization from [H6], obtaining
the following result:

Corollary 7 For an arbitrary wreath product ≀∞i=1Hi of non-abelian simple transitive permuta-
tion groups (Hi, Xi) on finite sets Xi there is an almost minimal automaton realization by a
3-state bounded automaton A over the alphabet X = (Xi)i≥1. The group G(A) generated by
A is an amenable not finitely presented group of exponential growth, and its two generators
corresponding to the nontrivial states of A generate a free semigroup; this is also an example
of a self-replicating weakly branch and nearly finitary group.

Remark 5 We suppose that the system (7) of wreath recursions for the automaton A from
the above corollary defines for every i ≥ 1 the isomorphism of the group G(Ai) with the wreath
product G(Ai+1) ≀Xi

Hi. In this case, we could use the recent results due to K. Juschenko
([43]) and obtain that G(A) is an amenable group which is not elementary subexponentially
amenable. Moreover, different sequences (Hi, Xi)i≥1 probably give non-isomorphic automata
groups. In consequence, we could obtain uncountable many such groups. Note that the first
example of a group which is not elementary subexponentially amenable was the basilica group
constructed in 2002 by Grigorchuk and Żuk ([38]). However, the proof that this is an amenable
group was given in 2005 by L. Bartholdi and B. Virág – [9]. The basilica group is generated
by a 3-state Mealy automaton A = ({a, b, id}, {0, 1},R) with the following system of wreath
recursions:

R :


a = (id, b),
b = (id, a)(0, 1),
id = (id, id).

2.7 The characterization of wreath products by automata – paper [H7]

Let X = (Xi)i≥1 be an arbitrary changing alphabet. In 2010 Bondarenko ([15]) observed,
that under some general conditions on a sequence (Gi, Xi)i≥1 of transitive permutation groups,
there is a finite set of rooted and directed automorphisms of the treeX∗ which topologically gen-
erates the wreath product W∞ := ≀∞i=1Gi, obtaining in this way a criterion ([15], Theorem 1.1)
when such a wreath product is topologically finitely generated. In spite of the fact that the
full characterization of a finite topological generation for wreath products ≀∞i=1Gi was given by
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E. Detomi and A. Lucchini in 2013 (Theorem 4), the detailed analysis of the Bondarenko’s
proof allows to get an insight into the construction of the corresponding topological generating
set. This construction gave an idea, which finally allowed us to obtain the full characterization
of the sequences (Gi, Xi)i≥1 for which the wreath product ≀∞i=1Gi is generated by an automaton
over the alphabet X = (Xi)i≥1, as well as, in the case when X is fixed, by a Mealy automaton.

Theorem 25 ([H7], Theorem 1) Let (Gi, Xi)i≥1 be a sequence of transitive permutation groups.

(i) Then the wreath product W∞ = ≀∞i=1Gi is generated by an automaton over the alphabet
X = (Xi)i≥1 if and only if the following two conditions hold:

(a) the sequence (d(Gi))i≥1 is bounded,

(b) d(
∏

i≥1Gi/G
′
i) <∞.

(ii) If the alphabet X = (Xi)i≥1 is fixed, then the wreath product W∞ is generated by a Mealy
automaton over X if and only if the following conditions hold:

(a’) the sequence (Gi)i≥1 is decreasing, i.e. G1 ≥ G2 ≥ . . . ,

(b’) the smallest group in this sequence is perfect.

If the alphabetX = (Xi)i≥1 is bounded, then both the sequences (d(Gi))i≥1 and (d(Gi)/Ni−1)i≥2
are bounded (we use notations as in Theorem 4). Consequently, we obtain:

Corollary 8 ([H7], Corollary 1) Let (Gi, Xi)i≥1 be a sequence of transitive permutation groups.
If the alphabet X = (Xi)i≥1 is bounded or the sequence (d(Gi))i≥1 is bounded, then the following
statements are equivalent

(i) the wreath product ≀∞i=1Gi is generated by an automaton over X,

(ii) the wreath product ≀∞i=1Gi is topologically finitely generated.

If X is fixed, then the following statements are equivalent:

(iii) the wreath product ≀∞i=1Gi is generated by a Mealy automaton over X,

(iv) the wreath product ≀∞i=1Gi is topologically finitely generated and the sequence (Gi)i≥1 is
decreasing.

On the other hand, it is possible to choose an alphabet X = (Xi)i≥1 and a sequence
(Gi, Xi)≥1 of transitive perfect groups such that the sequence (d(Gi)/Ni−1)i≥2 is bounded but
the sequence (d(Gi))i≥1 is unbounded ([15], Example 3.5). Consequently, we obtain:

Corollary 9 ([H7], Corollary 2) There is a sequence (Gi, Xi)i≥1 of transitive permutation
groups on finite sets Xi such that the wreath product ≀∞i=1Gi is topologically finitely generated
but there is no automaton which generates this wreath product.

For the proof of the first part of Theorem 25, we introduced the notion of a generating basis
of an arbitrary infinite sequence (Gi)i≥1 of finite groups.

Definition 20 A generating basis (of degree m) of a sequence (Gi)i≥1 of finite groups is a
sequence Γ = (Γi)i≥1 such that each Γi is an m-tuple (g1i, . . . , gmi) of elements of the group Gi

and the following conditions hold:
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• for each i ≥ 1 the elements from Γi generate the group Gi, and

• there is 1 ≤ k ≤ m such that for each i ≥ 1 the set {g1i, . . . , gki} generates the abelian-
ization Gi/G

′
i, and

• the elements gji ∈ Gab
i , gji′ ∈ Gab

i′ are of coprime orders for all 1 ≤ j ≤ k and i ̸= i′.

Proposition 12 ([H7], Proposition 3) A sequence (Gi)i≥1 of finite groups has a generating
basis if and only if the conditions (a)–(b) from Theorem 25 are satisfied. Moreover, if these
conditions are satisfied, then the sequence (Gi)i≥1 has a generating basis of degree m := d1+d2,
where d1 := d(

∏
i≥1Gi/G

′
i), d2 := maxi≥1(d(Gi)).

Proposition 13 ([H7], Proposition 4) Let (Gi, Xi)i≥1 be a sequence of transitive permuta-
tion groups satisfying the conditions (a)–(b) from Theorem 25. Let ((g1i, . . . , gmi))i≥1 be an
arbitrary generating basis of this sequence. Additionally, let us assume that for every i ≥ 1 the
action of the commutator subgroup G′i on the set Xi satisfies the following condition: there are
two letters xi, x′i ∈ Xi in the same orbit but with the different stabilizers. For each 1 ≤ j ≤ m
let us define two automorphisms Rj, Dj ∈ ≀∞i=1Gi by their vertex permutations σRj ,w, σDj ,w

(w ∈ X∗) as follows:

σRj ,w :=

{
gj1, w = ϵ,
idX|w|+1

, w ̸= ϵ,
σDj ,w :=

{
gj(i+1), w = x1 . . . xi−1x

′
i, i ≥ 1,

idX|w|+1
, otherwise.

Then the set {R1, . . . , Rm, D1, . . . , Dm} topologically generates the wreath product ≀∞i=1Gi.

In particular, we see that each automorphism Rj from the above proposition is rooted, and
each automorphism Dj is 1-directed with the direction x1x2x3 . . . ∈ Xω. On basis of the above
construction, we may define the standard automaton generating the wreath product ≀∞i=1Gi. In
such an automaton, the set of states consists of 3m states, such that m of these states define the
automorphisms Rj, and the remaining 2m states define the automorphisms Dj. Unfortunately,
such an automaton is not universal, as it can generate the wreath product ≀∞i=1Gi under the
above described additional condition (beside the necessary conditions (a)–(b)) on the actions
of the commutator subgroups G′i. In order to obtain a universal construction, we observed
that some modification of the standard automaton could be introduced. This led us to the
automaton from the following proposition.

Proposition 14 ([H7], Proposition 10) Let (Gi, Xi)i≥1 be a sequence of transitive permu-
tation groups satisfying the conditions (a)–(b) from Theorem 25. Let ((g1i, . . . , gmi))i≥1 be an
arbitrary generating basis of this sequence. For every i ≥ 1 let us choose two letters xi, x′i ∈ Xi

and let us define an automaton A = (S,X, φ, ψ) in the following way:

• S = {e} ∪
∪m

j=1{rj0, rj1, rj2, rj3} ∪
∪m

j=1{dj1, dj2, dj3},

• the sequence φ = (φi)i≥1 of transition functions φi : S × Xi → S is defined as follows:
φi(e, x) = φi(rj0, x) = e and

φi(rj(s+1), x) =

{
rjs, x = x′i,
e, x ̸= x′i,

φi(dj(s+1), x) =


dj(s+1), x = xi,
rj(s+1), x = x′i, i ≡ −1 (mod 3),
e, otherwise,
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• the sequence ψ = (ψi)i≥1 of output functions ψi : S ×Xi → Xi is defined as follows:

ψi(rj0, x) = gji(x), ψi(e, x) = ψi(dj(s+1), x) = ψi(rj(s+1), x) = x

for all i ≥ 1, x ∈ Xi, 1 ≤ j ≤ m, s ∈ {0, 1, 2}. Then the automaton A generates the wreath
product ≀∞i=1Gi.

Note at first that the group G(A) generated by the above defined automaton A is a subgroup
of the wreath product ≀∞i=1Gi, as for every i ≥ 1 the vertex group VA,i ≤ Sym(Xi) (that is the
group generated by the labels σs,i : x 7→ ψi(s, x) for s ∈ S) coincides with Gi. In order to
obtain a clear description of the actions of the generators s̃ ∈ G(A) (s ∈ S) on the tree X∗, and
consequently to prove that A indeed generates the wreath product ≀∞i=1Gi, we introduced the
concept of ξ-partition Aξ for an arbitrary automaton A = (S,X, φ, ψ) and a strictly increasing
sequence ξ = (ti)i≥0 of integers with t0 := 0. Namely, we define the automaton Aξ as an
automaton

Aξ := (S,Xξ, φξ, ψξ)

in which the changing alphabet Xξ is a so-called ξ-partition of the alphabet X, that is

Xξ := (Yi)i≥1, Yi :=

ti∏
r=ti−1+1

Xr, i ≥ 1,

and the transition functions φξ,i : S×Yi → S and output functions ψξ,i : S×Yi → Yi are defined
in such a way that in every moment i ≥ 1 the automaton Aξ, being in an arbitrary state s ∈ S
and reading from the input tape an arbitrary letter y ∈ Yi (which is a word over the alphabet
(Xj)j>ti−1

), imitates the behaviour of the automaton A, which being in a moment ti−1 + 1 in a
state s, it reads from the input tape the word y. For the proof of Proposition 14, we now use
the following lemma:

Lemma 7 ([H7], Lemma 1) If for every i ≥ 1 the equality holds VAξ,i = ≀tir=ti−1+1VA,r and
additionally the automaton Aξ generates the wreath product ≀∞i=1VAξ,i, then the automaton A
generates the wreath product ≀∞i=1VA,i.

Next, we consider the ξ-partition Aξ = (S, Y, φξ, ψξ) of the automaton A, where ξ = (3i)i≥0,
and we derive the description of transition and output functions in the automaton Aξ ([H7],
Proposition 9). On basis of this description, we show that the 3-iterated wreath product
Hi := ≀3ir=3i−2Gr (i ≥ 1) is the vertex group VAξ,i of the automaton Aξ, and, which is crucial,
the condition from Proposition 13 for the actions of commutator subgroups H ′i on the sets
Yi := X3i−2×X3i−1×X3i is satisfied. We also construct the generating basis (ĥ1,i, . . . , ĥ3m,i)i≥1
of degree 3m for the sequence (Hi)i≥1. Next, we prove that the automorphisms defined by
the states rjs and dj(s+1) (1 ≤ j ≤ m, s = 0, 1, 2) of the automaton Aξ are, respectively,
the rooted and 1-directed automorphisms of the tree X∗ξ , and these automorphisms can be
described by using the basis (ĥ1,i, . . . , ĥ3m,i)i≥1 in the same way as the automorphisms Rj, Dj

from Proposition 13 (for the corresponding basis). As a result, we obtain that the automaton
Aξ generates the wreath product ≀∞i=1VAξ,i = ≀∞i=1Hi and hence, by Lemma 7, we get that the
automaton A generates the wreath product ≀∞i=1Gi.

We also see by above that only 6m states of the automaton A are used to generate ≀∞i=1Gi.
Consequently, we obtain the following estimation: d(≀∞i=1Gi) ≤ 6m. Thus, the above construc-
tion provides the following upper bound for the rank of the wreath product ≀∞i=1Gi, as well as
for the number of states in an optimal automaton for this wreath product.
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Corollary 10 ([H7], Corollary 3) Let (Gi, Xi)i≥1 be an arbitrary sequence of transitive per-
mutation groups. Denote m := d1 + d2, where d1 := d(

∏
i≥1Gi/G

′
i) and d2 := supi(d(Gi)).

Then d(W∞) ≤ 6m, and the number of states in an optimal automaton for the group ≀∞i=1Gi is
not greater than 7m+ 1.

The converse part of Theorem 25 (i) follows from the observation that if the wreath product
≀∞i=1Gi is generated by an arbitrary automaton A = (S,X, φ, ψ), then this wreath product,
and consequently also the direct product

∏
i≥1Gi/G

′
i (as its homomorphic image), must be

topologically finitely generated. Further, for every i ≥ 1 the group Gi is generated by the
vertex permutations σs̃,w ∈ Sym(Xi) for s ∈ S and w ∈ X i−1. But the vertex permutation
σs̃,w (s ∈ S, w ∈ X i−1) is the restriction of the section s̃{w} to the set of one-letter words,
and, in turn, this section is the transformation defined by a state of the automaton Ai =
(S, (Xj)j≥i, (φj)j≥i, (ψj)j≥i). Thus, we have d(Gi) ≤ |S| for every i ≥ 1.

To prove Theorem 25 (ii), we consider an arbitrary transitive perfect group (G,X) on a
finite set X, and by using its arbitrary m-element generating set, we construct a (7m+1)-state
Mealy automaton B over X. We next show that the automaton B generates the wreath power
P∞ := ≀∞i=1G

(i) of the group G ([H7], Proposition 12). To this aim, we study the automorphisms
defined by the states of the automaton Bξ, where ξ := (2i)i≥0 ([H7], Proposition 11). Finally,
for an arbitrary sequence (Gi, X)i≥1 of transitive groups satisfying the conditions (a’)–(b’) of
Theorem 25, we use the construction of the automaton B together with the next lemma, to
show that the wreath product W∞ = ≀∞i=1Gi is generated by a Mealy automaton over X.

Lemma 8 ([H7], Lemma 2) If A = (S,X, φ, ψ) is a Mealy automaton over the alphabet X
and (G,X) is a transitive permutation group such that the labels σs ∈ Sym(X) (s ∈ S) of all
the states belong to G, then the wreath product G(A) ≀X G is generated by a Mealy automaton
over X. In particular, the group G(A) ≀X G is generated by a Mealy automaton over X.

For the converse, if the wreath product W∞ = ≀∞i=1Gi is generated by a Mealy automaton
A = (S,X, φ, ψ), then the group Gi (i ≥ 1) is generated by the set

Si := {σs̃,w : s ∈ S,w ∈ X i−1}.

But, for all i ≥ 2 and w ∈ X i−1, we have: w = xv for some v ∈ X i−2 and x ∈ X, and hence,
for every s ∈ S, we have: σs̃,w = σq̃,v, where q := φ(s, x) ∈ S, which implies Si ⊆ Si−1. Thus
the sequence (Gi)i≥1 is decreasing. The smallest group in this sequence (let us denote it by
Gi0) must be perfect, because otherwise the abelianization K := Gi0/G

′
i0

would be a nontrivial
abelian group and the infinite direct product KN would be a homomorphic image of the wreath
product W∞ and hence, this wreath product would not be topologically finitely generated.
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3 Discussion of other results

3.1 Some other achievements after PhD degree – papers [P1]–[P7]

The scientific achievements, obtained after the defence of my PhD Thesis in June 2005,
include the following publications:

[P1] A. Woryna, The generalized dihedral groups Dih(Cn
∞) as groups generated by time-varying

automata, Algebra and Discrete Mathematics, 3 (2008), 98–111,

[P2] A. Woryna, The group of balanced automorphisms of a spherically homogeneous rooted
tree, Annales Mathematicae Silesianae, 23 (2009), 83–101,

[P3] A. Woryna, The concept of duality for automata over a changing alphabet and generation
of a free group by such automata, Theoretical Computer Science, 412 (45) (2011),
6420–6431; IF 0.665,

[P4] A. Woryna, Automaton ranks of some self-similar groups, Lecture Notes in Com-
puter Science, 7183 (2012), 514–525,

[P5] A. Woryna, The concept of self-similar automata over a changing alphabet and lamplighter
groups generated by such automata, Theoretical Computer Science, 482 (2013),
96–110; IF 0.516,

[P6] A. Woryna, The classification of abelian groups generated by time-varying automata and
by Mealy automata over the binary alphabet, Information and Computation, 249
(2016), 18–27; IF 1.050,

[P7] A. Woryna, On groups generated by bi-reversible automata: the two-state case over a
changing alphabet, Journal of Computer and System Sciences, 86 (2017), 181–
190; IF 1.678.

In the paper [P2], we considered the group Autc(X
∗) ≤ Aut(X∗) of cyclic automorphisms

and its subgroup Jc(X∗) ≤ Autc(X
∗) consisting of homogeneous automorphisms. The elements

of the group Autc(X∗) are automorphisms g ∈ Aut(X∗) such that each vertex permutation σg,w
(w ∈ X∗) is a power of a fixed long cycle on the corresponding set of letters (the cycle is the
same for all elements of the group Autc(X∗)). Next, for every homogeneous automorphism g ∈
Jc(X

∗), we replaced its vertex permutations at the vertices ending with an odd letter by their
inverses (we have previously fixed the division of each set of letters into odd and even-indexed
letters). The resulting cyclic automorphism (which obviously is no longer homogeneous), we
called a balanced automorphism of the tree X∗. We showed that the subset B ⊆ Autc(X

∗)
of all balanced automorphisms forms a group if and only if for every i ≥ 1 the implication
holds: 2 - ni ⇒ ni+1 = 2, where ni := |Xi|. Depending on the sequence (ni)i≥1, we derived
various algebraic properties of the group B, obtaining a concrete realization of an uncountable
family of uncountable metabelian groups satisfying the identity x2y2 = y2x2. For example,
for the sequence (2, n2, 2, n4, 2, n5, . . .) the group B is isomorphic to the infinite direct product∏

i≥1D2n2i
of finite dihedral groups. Generally, the group B is residually nilpotent if and only

if all the numbers ni are powers of two. Moreover, the group B decomposes into the product
K0K1 of its two abelian subgroups with the trivial intersection (however, in general, it is not a
semi-direct product of abelian groups).
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In the papers [P1], [P3], [P5], we constructed and investigated the automaton realizations
of some particular classes of groups, which are important and well-known in algebra. In [P1],
we studied the generalized dihedral groups Dih(Cn

∞) (n ≥ 1), which are semi-direct products
Cn
∞ oϕ C2 with ϕ(0) the identity and ϕ(1) inversion. If we consider the power Cn

∞ as a cubical
lattice in the Euclidean space Rn, then we may investigate the groupDih(Cn

∞) as a topologically
discrete group of isometries of Cn

∞ generated by translations and reflections in all points from
Cn
∞. These groups constitute important examples of the so-called crystallographic groups. In

the paper [P1], we provided a new interpretation of the group Dih(Cn
∞), as a group G(A)

generated by an automaton A with a (2n+2)-element set of states S = {a1, b1, . . . , an+1, bn+1}
with the property that the automaton transformations ãk and b̃k (1 ≤ k ≤ n+ 1) are mutually
inverse balanced automorphisms of order 2. In particular, we have G(A) = ⟨ã1, . . . , ãn+1⟩. We
provided the formula for the minimal length ||g|| of any element g ∈ G(A) (considered as a
semi-group word on the letters ãk, 1 ≤ k ≤ n+1), obtaining the transparent algorithms solving
both the word and conjugacy problem in G(A). For the action of the group G(A) on the tree
X∗, we characterized the orbits of this action and the stabilizers. In particular, we obtained
StabG(A)(m) = StabG(A)(w) ≃ Cn

∞ and StabG(A)(u) = {idX∗} for all m > 0, w ∈ Xm, u ∈ Xω.
In [P5], we constructed a universal automaton realization for the generalized dihedral group

KwrC∞ :=
⊕

C∞
K o C∞, where K is an arbitrary finitely generated abelian group (for the

group GwrC∞ to be residually finite the group G must be abelian – [39]). For every finitely
generated abelian group K, it is easy to construct an automaton A (over a changing alphabet)
such that G(A) ≃ K. For this, we may use the construction of a diagonal automaton, that
is an automaton A = (S,X, φ, ψ) such that φi(s, x) = s for all i ≥ 1, x ∈ Xi and s ∈ S.
Along the way, we get the minimal automaton for K (i.e. an automaton in which the number
of states equals d(K)). The main result of the paper [P5] is the observation that a simple
manoeuvre on each transition function in a minimal diagonal automaton generating the direct
product K×C∞ leads to the automaton realization of the group KwrC∞. For this manoeuvre,
in the i-th (i ≥ 1) transition function, we move from an arbitrary state to a fixed unique state
(which is common for all i ≥ 1) whenever the automaton reads from the input tape some
fixed letter from the set Xi (the letter depending on a current state). This modification is
universal, as it works for an arbitrary finitely generated (finite or infinite) abelian group K.
Since d(KwrC∞) = d(K × C∞) = d(K) + 1, we get a minimal automaton A = (S,X, φ, ψ) for
the group KwrC∞. We have also proved that this construction gives a self-similar automaton,
that is for every i ≥ 1 the map s̃ 7→ si for s ∈ S induces an isomorphism G(A) ≃ G(Ai), where
Ai = (S, (Xj)j≥i, (φj)j≥i, (ψj)j≥i) is the i-th transition of the automaton A.

Presently, there are not known any realizations by a Mealy automaton of the group KwrC∞
with an infinite K. Beside of that, the only known minimal realization (by a Mealy automaton)
concerns the simplest nontrivial case, that is K = C2 ([37]). M. Kambites, P. Silva and
B. Steinberg ([46, 72]) constructed also for an arbitrary finite abelian group K a single Mealy
automaton A such that G(A) ≃ KwrC∞. This is a so-called reset automaton, in which both
the set of states and the alphabet coincide with K. The previously minimal case (K = C2)
deserves on a special attention, as the study of the group generated by the corresponding 2-state
Mealy automaton allowed to find the counterexample to the strong Atiyach conjecture on the
possible values of the so-called L2-Betti numbers ([37]).

In the paper [P3], we extended to arbitrary time-varying automata the notion of a dual
automaton and its action on the free monoid S∗ over the set of states. Previously, this notion was
investigated only for Mealy-type automata. In [P3], we used this extension to find an explicit
and quite simple and accessible construction of a 2-state automaton A (so-called bireversible
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automaton) over an unbounded changing alphabet such that the group G(A) is the non-abelian
free group of rank 2. It is still an open problem if there exists a 2-state automaton over a
bounded changing alphabet, which generates a non-abelian free group. In particular, we do not
know, if there is a 2-state Mealy automaton generating a non-abelian free group. On the other
hand, for every n ≥ 3 there is a construction of an n-state Mealy automaton over the binary
alphabet which generates Fn (non-abelian free group of rank n) ([73, 80]).

The problem of obtaining an explicit automaton realization of a non-abelian free group by
Mealy automata (i.e. not necessarily as a group G(A) generated by a single automaton, but as
a subgroup G ≤ MA(X∗) of all transformations defined by Mealy automata over X) turned
out to be far from trivial. In 1983, Aleshin ([2]) constructed two transformations over the
binary alphabet: one transformation defined by a 3-state Mealy automaton, and the second
by a 5-state Mealy automaton, claiming that they generate F2. But some mistakes have been
found in his proof. The first automaton realization of F2, presented in 1998 by A. M. Brunner
and S. Sidki ([21]), was based on an embedding of the full linear group GL2(C∞) into the
group MA(X∗) of the automaton transformations over the alphabet X = {1, 2, 3, 4}. In 2000,
A. Oliinyk and V. Sushchansky ([65]) investigated the group of infinite unitriangular matrices
over an arbitrary finite field F as a subgroup of the group MA(F∗), which allowed them to
construct an automaton realization of F2 by Mealy automata over the binary alphabet (see also
[41]). The problem of obtaining a concrete realization of a non-abelian free group by a single
Mealy automaton turned out to be even more difficult. Sidki ([71]) conjectured that the 3-state
Mealy automaton from the Aleshin’s construction generates F3. Grigorchuk and Żuk tried to
confirm this, but the correct proof was presented by the siblings M. Vorobets and Ya. Vorobets
([79]) in 2007. It is worth to note that the above difficulties contrast with the Bhattacharjee’s
([13]) result from 1995, according to which for every alphabet X = (Xi)i≥1 and every n ≥ 1 a
random choice of an n-element sequence of automorphisms of the tree X∗ almost surely gives
a basis for Fn, that is the set of those n-tuples which do not satisfy this condition has measure
zero (in reference to the Haar measure on the group Aut(X∗)).

In the paper [P7], we introduced the notion of reversibility and bireversibility for automata
over a changing alphabet. For Mealy-type automata, this notion was introduced by O. Mace-
dońska, V. Sushchanky and V. Nekrashevych ([56]) in 2000, where it was observed that the
automata group Bir(X∗) consisting of the transformations defined by bireversible Mealy au-
tomata over the alphabet X is a dense subgroup in the group MA(X∗) of all transformations
defined by Mealy automata over X, as well as that the group Bir(X∗) is contained in the group
Comm(Fn) of virtual automorphisms of the free group Fn of rank n := |X| (the Commensura-
teur of Fn) as a subgroup of the so-called vp-automorphisms. In 2005 Y. Glasner and S. Mozes
([27]) associate with any bireversible Mealy automaton a square complex together with its uni-
versal covering, which allowed to construct the first examples of automata A for which the group
G(A) is a non-abelian free group. Up until now, this is the only known construction of Mealy
automaton which generates a non-abelian free group. Recently, I. Bondarenko, D. D’Angeli
and E. Rodaro ([16]) constructed the first example of a bireversible Mealy automaton which
generates not finitely presented group (isomorphic to C3wrC∞). Besides, I. Klimann ([50])
showed that the semigroup generated by an arbitrary 2-state reversible Mealy automaton is
either finite or free. Whereas T. Godina and I. Klimann ([29]) proved that the connected re-
versible Mealy automata with a p-element set of states for a prime p ≥ 3 can not generate an
infinite torsion group.

Recall that a Mealy automaton A = (S,X, φ, ψ) is called reversible if for every letter x ∈ X
the map S ∋ s 7→ φ(s, x) ∈ S is a permutation of the set of states. If both the automaton
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A and its inverse (denoted by A−1) are reversible, then A is called bireversible. In [P7], we
extended these notions in a natural way to automata over a changing alphabet. Namely, we
call an automaton A = (S,X, φ, ψ) reversible if for all i ≥ 1 and x ∈ Xi the transformation
S ∋ s 7→ φi(s, x) ∈ S is a permutation of the set of states. If additionally, the inverse automaton
A−1 is also reversible, then A is called bireversible.

As an example of a bireversible automaton, we may take an arbitrary diagonal automaton.
Obviously, every diagonal Mealy automaton generates a finite group (which is a subgroup in the
symmetric group on the corresponding alphabet). Also, every group generated by a diagonal
automaton over a bounded changing alphabet is finite. The situation changes in the case of an
unbounded alphabet. In [P5], we have shown in this case that diagonal self-similar automata
provide a universal method for defining arbitrary finitely generated residually finite groups.
Namely, for every such a group G and an unbounded alphabet X = (Xi)i≥1, there is a self-
similar diagonal automaton A = (S,X, φ, ψ) such that G(A) ≃ G and |S| = d(G). However,
our proof was highly un-constructive. Namely, in spite of the fact that we had no idea for a
given abstract group G how to explicitly construct the sequence ψ = (ψ)i≥1 of output functions
in the corresponding automaton, we were able to show directly from residual finiteness of G
that such a construction was feasible.

In [P3], we investigated bireversible automata of another type. These were 2-state automata
A = ({a, b}, X,R) with the following wreath recursions in the i-th transition (i ≥ 1): ai =
(bi+1, ai+1, . . . , ai+1)πi, bi = (ai+1, bi+1, . . . , bi+1)τi, where the permutations πi, τi ∈ Sym(Xi)
form a standard generating set of Sym(Xi), that is τi is an arbitrary transposition and πi is
an arbitrary long cycle such that the letters x1,i and x2,i from the first two positions of the
alphabet Xi satisfy: τi(x1,i) = πi(x1,i) = x2,i. In the paper [P3], we proved that if the alphabet
X = (Xi)i≥1 is unbounded and the sequence (|Xi|)i≥1 is non-decreasing, then G(A) ≃ F2, and
in [P7], we showed that if |Xi| ≥ 3 for every i ≥ 1 and GCD(|Xi| − 1, |Xi′ | − 1) = 1 for i ̸= i′,
then the action of G(A) on the tree X∗ is spherically transitive.

A slight modification of the above wreath recursions gives the following recursions ai =
(ai+1, . . . , ai+1)πi, bi = (bi+1, . . . , bi+1)τi for i ≥ 1. The group G generated by the obtained
2-state diagonal automaton is isomorphic to the subgroup ⟨π, τ⟩ ≤

∏
i≥1 Sym(Xi), where π :=

(πi)i≥1, τ := (τi)i≥1. The case Xi := {1, . . . , i + 1}, πi := (1, 2, . . . , i + 1), τi := (1, 2) was
investigated in [53, 54] and in [D3] (the description of the paper [D3] is on p. 47). In [D3],
we have shown that the commutator subgroup G′ is locally finite, the semigroup generated by
π and τ is free, but G does not contain non-abelian free subgroups. It even turns out that
G is amenable ([53], Example 4.1). Moreover, if we denote GI := ⟨πI , τI⟩ for every I ⊆ N,
where πI is obtained from π by replacing πi for i ∈ I with the trivial permutations, then
for all I, I ′ ⊆ N \ {1, 2, 3, 4}, we obtain that I ̸= I ′ implies that the groups GI and GI′ are
not isomorphic ([54], Proposition 4.1). Consequently, we obtain uncountably many pairwise
non-isomorphic groups G(A) generated by a 2-state diagonal automaton A over the alphabet
X = (Xi)i≥1.

One of the main results in [P7] was to show that for an arbitrary changing alphabet X =
(Xi)i≥1 the following two statements are equivalent: (i) there is a 2-state bireversible automaton
A over X for which G(A) ≃ F2, (ii) the alphabet X is unbounded. In the proof of the above
equivalency, we have shown that if the alphabetX is bounded, then for every 2-state bireversible
automaton A over X the group G(A) cannot be torsion-free groups. In particular, there is no 2-
state biereversible Mealy automaton generating F2. Further, on basis of the construction of an
automaton from [P3], we also obtain an explicit and clear construction of a 2-state automaton
over an arbitrary unbounded changing alphabet which generates F2.
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In [P7], we also classify all groups G(A) generated by a 2-state bireversible automaton A
over the binary alphabet (obviously, there are uncountable many of such automata). It turns
out that all these groups are abelian and finite; and there are five such groups: the trivial group,
C2, C2 ×C2, C4 and C2 ×C4. Only the first three of them are generated by the corresponding
Mealy automaton. We also investigated the class IR2,2 of groups G(A) generated by a 2-state
reversible automaton A over the binary alphabet, as well as the class BIR2,3 of groups G(A)
generated by a 2-state bireversible automaton over the ternary alphabet X = {1, 2, 3}. We
have shown that each of these classes contains infinitely many pairwise non-isomorphic finite
groups.

In the paper [P4], we introduced for any m ≥ 2 and any abstract group G the notion of
an automaton rank ar(G,m) as a minimal number of states in a Mealy automaton A over an
m-litter alphabet for which the isomorphism G(A) ≃ G holds. Obviously, we have: ar(G,m) ≥
d(G) (if there is no such automaton, then we assume ar(G,m) := ∞). For example, the
presently known automaton realizations of non-abelian free groups Fn (n ≥ 3) give the equality
ar(Fn, 2) = d(Fn) = n for every n ≥ 3. On the other hand, the exact value of ar(F2,m)
(m ≥ 2) is not known, but the following estimation 4 ≤ ar(F2, 2) ≤ 6 is true. By using the
automaton realizations of the Baumslag-Solitar groups BS(1, k) := ⟨a, t : tat−1 = ak⟩, derived
by L. Bartholdi and Z. Šunića ([8]), we easily concluded in [P4] that for any m,n ≥ 2 there is
a group G with d(G) = 2 and n ≤ ar(G,m) <∞.

In [P4], we constructed for all n ≥ 1 and m ≥ 2 an optimal Mealy automaton over an m-
letter alphabet, which generates the abelian free group Cn

∞, obtaining in this way the automaton
ranks of abelian free groups. It turned out that the optimal construction not always gives the
minimal automaton (that is an automaton with an n-element set of states) – in the cases
m = 2 or n = 1 the optimal automaton has n + 1 states. To this aim, we used the result due
to Nekrashevych and Sidki ([62]), according to which every self-similar abelian free group of
automorphisms of the tree {0, 1}∗ must be contracting.

We also suggest a wider approach by introducing for every abstract group G the automaton
spectrum sa(G) as the set of all pairs (n,m) ∈ N × N such that the isomorphism G(A) ≃ G
holds for some n-state Mealy automaton A over an m-letter alphabet. If (n,m) ∈ sa(G), then
obviously (n′,m′) ∈ sa(G) for any integers n′ ≥ n, m′ ≥ m. Thus, if [n] := {n, n + 1, . . .},
then we obtain: sa(G) = ∅ or there is a unique number k ∈ N (I called this number the
automaton width of G) such that sa(G) = ([n1]× [m1]) ∪ . . . ∪ ([nk]× [mk]) for some uniquely
defined sequences (ni)1≤i≤k, (mi)1≤i≤k of natural numbers such that the first sequence is strictly
increasing and the second – strictly decreasing. In [P4], we have shown the equalities sa(C∞) =
[2] × [2] and sa(Cn

∞) = ([n] × [3]) ∪ ([n + 1] × [2]) for n > 1. We are able to determine
the automaton spectra for the remaining homocyclic groups, as well as for some other finite
abelian groups (paper in preparation). For example, for all n ≥ 1 and m ≥ 2, we have
sa(Cn

m) = [n] × [γ(m)], where the number γ(m) is defined as follows: if m = pµ1

1 p
µ2

2 . . . pµt
t is

the canonical decomposition of m, then γ(m) = pµ1

1 + pµ2

2 + . . . + pµt
t (in particular, assuming

γ(1) := 0, we get the additive map γ : N → N). Further, if G is a finite abelian group with
the Shmitt canonical decomposition G ≃ Cn1

m1
×Cn2

m1m2
. . .×Cnk

m1...mk
(ni ≥ 1, mi ≥ 2), then by

denoting γ(G) := γ(m1)+ . . .+γ(mk), we obtain (d(G)+1, γ(G)) ∈ sa(G), and if n1 > 1, then
(d(G), γ(G)) ∈ sa(G); finally if GCD(mi,mi′) = 1 for i ̸= i′, then sa(G) = [d(G)] × [γ(G)].
In particular, we would like to know if there is a group G with the automaton width greater
than 2. We suppose to find such groups among finite abelian groups for which the equality
m1 = m2 = . . . = mk holds in the above decomposition.
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In the paper [P6], for every natural number n ≥ 1 and every abelian group G, we have
shown that the isomorphism G ≃ G(A) holds for some n-state time-varying automaton A
over the binary alphabet X = {0, 1} if and only if d(G) ≤ n and the torsion part of G is
a 2-group. Moreover, for every such a group G, we provided an explicit construction of the
corresponding automaton. As a byproduct, we obtained that there are infinitely many pairwise
non-isomorphic groups of the form G(A), where A is a 2-state automaton over the binary
alphabet (we remember that the 2-state Mealy automata over the binary alphabet generate
only six pairwise non-isomorphic groups). In [P6], we separately investigated the case of
Mealy automata, and we obtain an analogous characterization of abelian groups generated by
an n-state Mealy automaton over the binary alphabet. In particular, there are exactly 2n
groups of this form (up to isomorphism), and each of them is an elementary 2-group or an
abelian free group. Note that the number of all n-state Mealy automata (up to isomorphism
of automata) over the binary alphabet is finite and equal to 2n · n2n.

Obviously, we may investigate for arbitrary integers m,n ≥ 1 the class GT V(n,m) of groups
(up to isomorphism) of the form G(A), where A is an n-state automaton over an m-letter
alphabet. For every n ≥ 1 the class GT V(n, 1) is trivial, and for m ≥ 1 the clas GT V(1,m)
is finite and consists of some finite cyclic groups. Thus, the smallest interesting case is the
class GT V(2, 2), which, by above, is infinite. But, on the other hand, there are uncountably
many (up to isomorphism of automata) 2-state automata over the binary alphabet. Hence, it
would be interesting to know if the class GT V(2, 2) is uncountable. What other groups (besides
abelian groups) belong to this class? In particular, does a non-abelian free group belong to this
class? And maybe every 2-generated residually 2-group belongs to this class? Does this class
contain an example of a group with an unsolvable word problem? As for the last question, it is
even not known if there is an automaton A over a bounded alphabet such that the group G(A)
has an unsolvable word problem (remember that this problem is solvable in the class of groups
generated by a Mealy automaton). On the other hand, there is a constructive example of a
2-state diagonal automaton A over an unbounded changing alphabet such that the group G(A)
has an unsolvable word problem. This example is based on the construction of a 2-generated
residually finite group obtained in 2009 by G. Baumslaga and Ch. F. Millera III ([11]) on basis
of the B. H. Neumann’s groups from 1937.

3.2 The scientific achievements in the PhD Thesis – papers [D1]–[D5]

I defended my PhD Thesis, entitled "Time-varying Mealy automata and groups generated
by these automata", in June 2005 at the Institute of Mathematics of the University of Silesia.
My PhD supervisor was Professor Vitaliy Ivanovich Sushchansky. The scientific achievements
obtained in this PhD project consist of the following publications:

[D1] A. Woryna, Odwzorowania określone za pomocą automatów Mealy’ego zmiennych w czasie,
Zeszyty Naukowe Politechniki Śląskiej, Seria: Automatyka, z. 138 (2003),
201–215,

[D2] A. Woryna, On representation of a semi-direct product of cyclic groups by a 2-state
time-varying Mealy automaton, Zeszyty Naukowe Politechniki Śląskiej, Seria:
Matematyka-Fizyka, z. 91 (2004), 343–354,

[D3] A. Woryna, On permutation groups generated by time-varying Mealy automata, Publi-
cationes Mathematicae, Debrecen, 67 (1-2) (2005), 115–130; IF 0.238,
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[D4] A. Woryna, Representations of a free group of rank two by time-varying Mealy-automaton,
Discussiones Mathematicae General Algebra and Applications, 25 (2005),
119–134,

[D5] A. Woryna, On generation of wreath products of cyclic groups by two state time varying
mealy automata, International Journal of Algebra and Computation, 16 (2)
(2006), 398–415; IF 0.357.

In the papers [D1]–[D5], we considered an even wider class of automata over a changing
alphabet, by allowing to change the sets of states in the consecutive moments of their actions.
We called them time-varying Mealy automata. We formally defined such an automaton as a
quintuple A = (S,X, Y, φ, ψ), where (Si)i≥1 is a sequence of sets of states, X = (Xi)i≥1 and
Y = (Yi)i≥1 are changing alphabets, input and output, respectively, φ = (φi)i≥1 is a sequence
of transition functions of the form φi : Si ×Xi → Si+1 and ψ = (ψi)i≥1 is a sequence of output
functions ψi : Si×Xi → Yi. For every state s ∈ S1, we defined, analogically as for the automaton
from Definition 2, the automaton function s̃ : X∗ → Y ∗.

In [D1], we only investigated the structural properties of these automata; we identified some
natural subclasses, such as the class of automata with a fixed set of states, the class of periodic
automata or the class of permutational automata. We introduced the notion of equivalency for
such automata, and used this to compare various models of automata, identifying automata
with a simpler structure. We characterized the automaton functions f : X∗ → Y ∗, as well as
we characterized the transformations f : X∗ → X∗ defined by permutational automata as those
permutations of the tree X∗ which preserve the beginnings and the lengths of words. We also
used the notion of a section of an automaton function to characterize the functions defined by
periodic automata.

In [D3], we introduced the group GA(X∗) of all transformations defined by permutational
time-varying Mealy automata over an input-output alphabet X = (Xi)i≥1. We described
a natural isomorphism of this group with the wreath product ≀∞i=1Sym(Xi). We introduced
the notion of a group G(A) = ⟨s̃ : s ∈ S1⟩ generated by a single permutational automaton
A = (S,X,X, φ, ψ). We showed that every n-generated (n ≥ 1) residually finite group G
is isomorphic to the group G(A) generated by an n-state automaton A. For every n ≥ 1, we
constructed and investigated the 2-state automaton realization for the group which is dual to the
lamplighter group CnwrC∞, that is for the regular wreath product C∞wrCn. We also considered
the 2-state diagonal automaton A over the alphabet X = (Xi)i≥1 in which Xi := {1, . . . , i+1},
and the labels of the states in their i-th transitions (i ≥ 1) form the standard generating
set of the symmetric group Sym(Xi), that is the transposition αi := (1, 2) and the cycle
βi := (1, 2, . . . , i + 1). For the group G := G(A) generated by this automaton, we showed
that its action on the tree X∗ is spherically transitive, as well as that this group contains an
isomorphic copy of every finite group, it does not contain non-abelian free subgroups, but the
semigroup generated by the two automaton generators is free. It was also shown that the
commutator group G′ is locally finite and the abelianization G/G′ is isomorphic to the direct
product C2 × C∞.

In [D2], we considered the so-called Q-adic adding machine ([10]), where Q = (ni)i≥1 is an
arbitrary sequence of natural numbers greater than one. We can identify such a machine with
the cyclic automorphism a ∈ Aut(X∗) defined by the following sequence of wreath recursions:
ai = (idi+1, . . . , idi+1, ai+1)σi for i ≥ 1, where idi := idX∗

(i)
and σi ∈ Sym(Xi) is a long cy-

cle. The automorphism a is often useful (especially in the regular case) for various automaton
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realizations, and its properties are still investigated. For example, it can be shown that an
arbitrary automorphism g ∈ Aut(X∗) is a conjugate of a if and only if the cyclic group ⟨g⟩ acts
spherically transitively on the tree X∗ ([10]). We see that a is defined by an automaton with
two states, and this is the minimal number of states to define this automorphism. In [D2], we
wanted to know what happens if we join the adding machine with some another nontrivial cyclic
automorphism b ∈ Aut(X∗) which interferes as little as possible in the automaton structure
of a, that is it does not add new states within the automaton structure of the set {a, b} and
does not change the transition functions associated with a. We were interested in the group
generated by the resulting 2-element set of cyclic automorphisms. One of such simplest "min-
imal interfering" automorphisms is the automorphism b with the following wreath recursion:
b = (a2, id2, . . . , id2)σ1. In [D2], we showed that the group G(A) := ⟨a, b⟩ generated by the
resulting 2-state automaton A is isomorphic to the subgroup K := W ′ · C∞ of the semi-direct
product W := Cn1

∞ oC∞ with the action of C∞ on Cn1
∞ by the cyclic left shift. The group K is

an example of a torsion-free metabelian group, which is not nilpotent, its center is isomorphic
to C∞, the commutator subgroup is isomorphic to Cn1−1

∞ , and the abelianization is isomorphic
to C∞ × Cn1 . In particular, this construction describes a spherically transitive action of the
group K on the tree X∗. In [D2], we characterized the stabilizers StabG(A)(w), StabG(A)(m),
StabG(A)(u) (w ∈ X∗, u ∈ Xω, m > 0) and the orbits of the action on the set Xω of infinite
words. We also derived the presentation of K with reference to the generating set {a, b}.

In [D4], we derived two distinct automaton realizations for the non-abelian free group F2.
In the first one, we used a 2-state diagonal automaton A = ({s1, s2}, X,X, φ, ψ) over the
alphabet X = (Xi)i≥1 with Xi = {1, . . . , i} for i ≥ 1. We discovered that the output functions
in such an automaton can be defined on basis of the lexicographical ordering ≼ of the set of
all reduced group-words on two letters a and b, starting from ϵ ≼ a ≼ a−1 ≼ b ≼ b−1. To this
aim, we constructed two permutations a, b ∈ Sym(N) with the property that if W = W (a, b)
is the group-word from the n-th position (n ≥ 1), then for the composition W ∈ Sym(N)
corresponding to W , we have W(1) = n. It was proved that the required output functions
ψi : {s1, s2} ×Xi → Xi can be defined as follows: ψi(s1, x) = a(x) for x ∈ a−1(Xi), ψi(s1, x) =
ai(x) dla x /∈ a−1(Xi), ψi(s2, x) = b(x) for x ∈ b−1(Xi), ψi(s2, x) = bi(x) for x /∈ b−1(Xi), where
ai : Xi \ a−1(Xi) → Xi \ a(Xi) and bi(x) : Xi \ b−1(Xi) → Xi \ b(Xi) are arbitrary bijections.
We also provided an explicit analytic description of the permutations a and b. However, they
turned out to be quite complicated, which implied that this realization, although explicit and
diagonal, did not provide a visible opportunity for the further study of the group G(A) and its
action on the tree X∗.

The second automaton realization of F2 described in [D4] was based on the automaton over
the alphabet X = (Xi)i≥1 with Xi = {1, 2, . . . i+2} for i ≥ 1. By that construction, we realized
that the output functions in an automaton realization of F2 can be defined in a quite simple
way. Namely, the labels of the states in their i-th transition can be the successive powers of
the cycle (2, 3, . . . , i+ 2). However, when defining the transition functions, it was necessary to
add new states in the consecutive transitions of the automaton, such that in the i-th transition
we needed i + 2 states. In particular, that construction did not provide an automaton with a
fixed set of states.

Te previously mentioned paper [D5] was the last, but also the most interesting result
within my PhD Thesis. In that work, we constructed a 2-state permutational automaton
A = ({a, b}, X,X,R) with the sequence R = (R)i≥1 of wreath recursions, in which the
system Ri consists of the following two wreath recursions: ai = (bi+1, ai+1, . . . , ai+1), bi =
(ai+1, . . . , ai+1)σi, where the permutation σi ∈ Sym(Xi) is an arbitrary long cycle. The main
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result was the observation that if GCD(ni, ni′) = 1 for all i ̸= i′, then the automaton A gen-
erates the wreath product ≀∞i=1Cni

. For the group G := G(A), we also derived the following
properties (in the publication [D5], we have additionally observed that G is weakly branch):
G is a torsion-free not finitely presented centerless group, it acts spherically transitively on the
tree X∗, the semigroup generated by the automaton generators is free, and the abelianization
G/G′ is isomorphic to C∞ × C∞.

3.3 Some results from outside group theory – papers [S1]–[S5]

In the following works, we studied some problems from outside group theory.

[S1] A. Woryna, Liczby Stirlinga, a skoki narciarskie, Delta, 11 (2001), 6–7,

[S2] A. Woryna, The solution of a generalized secretary problem via analytic expressions,
Journal of Combinatorial Optimization, 33 (4) (2017), 1469–1491; IF 1.235,

[S3] A. Woryna, On the set of uniquely decodable codes with a given sequence of code word
lengths, Discrete Mathematics, 340 (2) (2017), 51–57; IF 0.639,

[S4] A. Woryna, On the ratio of prefix codes to all uniquely decodable codes with a given length
distribution, (under review),

[S5] A. Woryna, On the ratio of prefix codes to all uniquely decodable codes with the three-
element sequence of code-word lengths, (under review).

In [S1], we were interested in the following problem: what is the average number of tempo-
rary leaders during the round in the ski jumping competition. There are n ≥ 1 jumpers, and
after each jump a temporary leader is the jumper with the best current result. We assume that
there are no favourites, and that no two jumpers will have the same score (the problem came to
my mind when Adam Małysz has regularly been the winner of the competitions; in particular,
the first assumption was not right). Given 1 ≤ k ≤ n, we showed that the probability that
there will be exactly k temporary leaders during the round is equal to S(n, k)/n!, where S(n, k)
is the corresponding Stirling number of the first kind. Consequently, we obtained that the n-th
harmonic number

∑n
i=1 1/i is the solution of our problem.

In [S2], we discovered new combinatorial formulae, which allow analytically to obtain a
so-called optimal sequence solving a generalized version of the famous secretary problem. Pre-
viously, the solution was described only by the algorithms using mechanisms of dynamic or
linear programming, which allow to compute this solution only numerically. We suppose that
our purely combinatorial approach can be also used for some other (wider) classes of the sec-
retary problem, obtaining in this way some simplifications in the currently known formulae. In
the next work, we plan to use our construction of the optimal sequence to study the asymptotic
behaviour of its elements, hoping to obtain answers to some still open questions concerning
this asymptotics. The inspiration for writing the paper [S2] came after reading the book by
Jakub Szczepaniak, Matematyka nie tylko dla zakochanych, Wydawnictwo Politechniki
Łódzkiej, 2010.

In [S3], we investigated some important classes of variable-length codes with a given length
distribution. For general variable-length codes, these sequences are well-known to be charac-
terized by Kraft inequality, which also characterizes the length distributions of prefix codes.
Most questions, even elementary, are open in this area. For example, the characterization of
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the length distributions of bifix codes is not known. In [S3], we denoted by UDn(L) (resp.
PRn(L), resp. FDn(L)) the set of all codes (resp. prefix codes, resp. codes with finite delay)
over an n-letter alphabet and with length distribution L. The main results of the paper are:
(1) showing the inequality |UDn(L)|/|PRn(L)| ≥ 1+rarb/|PRn(a, b)|, where ra (resp. rb) is the
number of occurrences of a (resp. of b) in L, (2) showing that the equality FDn(L) = UDn(L)
holds if and only if the sequence L has length at most 2, or it is of the form (up to reordering)
L = (a, a, . . . , a, b) for some a and b satisfying the divisibility a | b.

In [S4], we investigated the ratio ρn,L = |PRn(L)|/|UDn(L)| and provided some nontrivial
lower and upper bounds for the numbers ξn,m := infL ρn,L, where the infimum is taken over the
sequences L of length m ≥ 1 for which UDn(L) ̸= ∅. In particular, we obtained: limn→∞ ξn,m =
1 for every m ≥ 1 and limm→∞ ξn,m = 0 for every n ≥ 2. We obviously have ξn,1 = 1 for every
n ≥ 2. In [S4], we used some known characterization of codes of length two to obtain the
exact value of ξn,2. Although the characterization of codes of length three is not known, we
were able to derive the exact formula for ξn,3 ([S5]). The inspiration for exploring the subject
presented in the papers [S3], [S4], [S5] were classes in Information Theory and Cryptography,
which I gave to students in mathematics at the Faculty of Applied Mathematics of the Silesian
University of Technology.
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