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Introduction

We present here briefly the classes of functions considered in the dissertation and
relations between them. For a given number t ∈ (0, 1) the symbol IQ(t) will denote the
smallest subfield of reals containing a singleton {t}. Obviously, IQ ⊆ IQ(t). Let IK ⊆ IR
be a given field, and let X be a linear space over the field IK. A set D ⊆ X is said to
be A-convex, where A ⊆ IK, if

x, y ∈ D, α ∈ A ∩ [0, 1] =⇒ αx+ (1− α)y ∈ D.

If A = {t} then we say that D is a t-convex set, in the case A = IR the set D is said
to be convex.

A point x0 ∈ D is said to be a IK-algebraically internal for a set D ⊆ X, and we
will write x0 ∈ algintIK(D), if for every x ∈ X there exists a number δ > 0 such that

x0 + αx ∈ D for α ∈ (−δ, δ) ∩ IK.

A set D is IK-algebraically open if algintIK(D) = D. In the case, where IK = IR we will
write x0 ∈ algint(D) and the set satisfying the condition algint(D) = D is said to be
algebraically open. Any open subset of a real linear-topological space is algebraically
open but the opposite implication is not true (see [62], Example 1.1).

Let D be a convex subset of a real linear space. We say that a function f : D → IR
is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for x, y ∈ D, t ∈ [0, 1].

If the above inequality is satisfied for all x, y ∈ D and fixed number t ∈ (0, 1), then we
say that f is a t-convex. If t = 1

2
then f is said to be convex in the sense of Jensen.

Obviously, each convex function is t-convex for all t ∈ (0, 1), in particular, convex
in the sense of Jensen. The converse implication does not hold in general. Indeed,
fix t ∈ (0, 1). Any discontinuous additive function a : IR → IR i.e. a solution of the
Cauchy’s functional equation

a(x+ y) = a(x) + a(y), x, y ∈ IR,

satisfying additionally the condition

a(tx) = ta(x), x ∈ IR

2



is an example of t-convex and Jensen-convex function which is not convex. (proof of
the existence of such function can be found, for example, in [71], Theorem 5.4.2). On
the other hand, every t-convex function has to be convex in the sense of Jensen. This
result was proved by N. Kuhn in [69] and the direct motivation was the paper [39] by
R. Ger. An easy proof of this fact was done by Z. Daróczy and Zs. Páles in [29].

Every convex function defined on an open and convex subset of a finite-dimensional,
real linear space is continuous. This is not the case for a function defined on a subset
of infinite-dimensional space. Any discontinuous linear functional is an example of a
discontinuous convex function. On the other hand, slight regularity conditions upon
a Jensen convex function imply its continuity. The most widely known result of this
type is a Bernstein-Doetsch theorem [14] (see also [62], Theorem 5.1) which states that
every Jensen convex function defined on an open and convex subset of a real linear
topological space which is bounded from above on some set with non-empty interior
is continuous and convex. A survey of results concerning the conditions implying the
continuity of additive functions and convex in the sense of Jensen can be found in M.
Kuczma’s monograph [71].

In [70] Kuhn investigated a more general inequality. For given, fixed numbers
s, t ∈ (0, 1) a function f : D → IR defined on a convex set D is said to be an (s, t)-
convex, if

f(sx+ (1− s)y) ≤ tf(x) + (1− t)f(y) for x, y ∈ D.

In the case, where s = t the class of (t, t)-convex functions coincides with the class of
t-convex functions. In [70] Kuhn showed that every (s, t)-convex function is convex in
the sense of Jensen. The problem of existence of non-constant solutions to the above
inequality for s 6= t depends on the algebraic structure of numbers s and t and was
solved by J. Matkowski and M. Pycia in [77] (see also [63] for a partial solution to this
problem). They proved that s and t are conjugate numbers i.e. either they are both
transcendental or they are both algebraic and have the same minimal polynomial with
rational coefficients if and only if there is a non-constant (s, t)-convex function.

To give a definition of convex functions in the sense of Schur we recall a few
necessary notions. A relation of majorization was introduced in 1934 by G. Hardy, J.
Littlewood i G. Pólya [46] in the following manner: for x, y ∈ IRn

x ≺ y ⇔
k∑
i=1

x[i] ≤
k∑
i=1

y[i] for k = 1, ..., n− 1 and
n∑
i=1

x[i] =
n∑
i=1

y[i],

where, for any x = (x1, ..., xn) ∈ Rn, (x[1], ..., x[n]) denotes the components of x in
decreasing order: x[1] ≥ ... ≥ x[n]. When x ≺ y, x is said to be majorized by y. The
relation of majorization defined above turns out to be a preordering relation i.e. it is
reflexive and transitive. The fact x ≺ y is equivalent (see [9], [46]) to the existence of
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a doubly stochastic matrix 1 S ∈ IRn
n such that

x = Sy.

The functions that preserve the order of majorization (in Schur’s honor who first con-
sidered them) are said to be convex in the sense of Schur. Thus we say that a function
f : W → IR, where W ⊆ IRn is Schur convex, if for all x, y ∈ W the implication

x ≺ y ⇒ f(x) ≤ f(y)

holds. In the case, where W = In with some interval I ⊆ IR the above condition is
equivalent to the following one

f(Sx) ≤ f(x) for x ∈ In

and for all doubly stochastic matrices S ∈ IRn
n. A survey of results concerning a

majorization and Schur convex functions may be found in an extensive monograph by
B. C. Arnold, A. W. Marshall and I. Olkin [9].

In 1954 E.M. Wright [125] introduced a new convexity property. A function f :
D → IR is called Wright convex if

(1) f(tx+ (1− t)y) + f((1− t)x+ ty) ≤ f(x) + f(y) for x, y ∈ D, t ∈ [0, 1].

Clearly, each convex and additive function is Wright convex, and each Wright-convex
functions is convex in the sense of Jensen.

The following theorem shows the connection between the classes of Schur convex
and Wright convex functions:

Theorem 1 ([81], Ng, 1987) Let D ⊆ IRm be a nonempty open and convex set,
f : D → IR and F (x1, . . . , xn) =

∑n
j=1 f(xj). The following conditions are equivalent

to each other:

(a) F is Schur convex for some n ≥ 2,

(b) F is Schur convex for every n ≥ 2,

(c) f is convex in the sense of Wright,

(d) f admits the representation

f(x) = w(x) + a(x), x ∈ D,

where w : D → IR is convex function, and a : IRm → IR is additive function.
1A doubly stochastic matrix is a square matrix S ∈ IRn

n of nonnegative real numbers, each of whose
rows and columns sums to 1.
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The equivalence (c)⇔ (d) gives a characterization of Wright convex functions and
for functions defined on an algebraically open subset of a real linear space was proved
by Kominek in [62].

If the inequality (1) is satisfied for all x, y ∈ D and fixed number t ∈ (0, 1), then we
say that f is a t-Wright convex function. The definition of t-Wright convex functions
was introduced by J. Matkowski in [76]. In this paper he asked whether any t-Wright
convex function has to be convex in the sense of Jensen? Gy. Maksa, K. Nikodem and
Zs. Páles in [78] gave a positive answer to the problem of Matkowski for all rational
t ∈ (0, 1) and for certain algebraic values of t. However, they proved that if t is either
transcendental or algebraic but such that the algebraic conjugate (a root of minimal
polynomial) lies outside the closed ball B(1

2
, 1
2
), then there exists a function bounded

from above on the whole real line IR which is t-Wright convex but Jensen concave and
not Jensen convex. Such a function has many pathological properties, in particular, it
is discontinuous at every point. In the further part of this description we will refer to
this example many times.

If f is a function such that the function −f is convex (t-convex, convex in the sense
of Jensen, t-Wright convex), then we say that f is concave (t-concave, concave in the
sense of Jensen, t-Wright concave).

If f is a function such that at the same time f and −f are convex (t-convex, convex
in the sense of Jensen, t-Wright convex), then f is called affine (t-affine, affine in the
sense of Jensen, t-Wright affine).

The next theorem gives a characterization of t-Wright affine functions. This theorem
was proved by K. Lajko [72] for functions defined on interval. The version presented
here generalizes Lajko’s theorem in many directions and it is a particular case of
theorem proved in (O3).

Theorem 2 Let X be a linear space over the field IK, where IQ(t) ⊆ IK ⊆ IR and
let D ⊆ X be a IQ(t)-convex set such that algintIQ(t)

(D) 6= ∅. Then f : D → IR is a
t-Wright affine function if and only if it has a form:

f(x) = a0 + a1(x) + a2(x, x), x ∈ D,

where a0 ∈ IR is a constant, a1 : X → IR is an additive function and a2 : X ×X → IR
is a bi-additive and symmetric function, satisfying the condition:

a2(tx, (1− t)x) = 0 for x ∈ X.

In the class of continuous functions the notions of: convexity, t-convexity, convexity
in the sense of Jensen and t-Wright convexity coincide.

The definition of delta-convex maps was introduced by L. Veselý and L. Zajiček in
[120] in the following manner:
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Definition 1 Let X and Y be real normed spaces, and let D ⊆ X be a convex set.
We say that a map F : D → Y is delta-convex, if there exists a continuous and
convex function f : D → IR such that f + y? ◦ F is continuous and convex for any
member y? ∈ Y ? with the norm equal to 1. If this is the case, then we say that F is a
delta-convex map with a control function f .

It turns out (see [120]) that a continuous map F : D → Y is delta-convex controlled
by a continuous function f : D → IR if and only if the inequality

(2)
∥∥∥F (x) + F (y)

2
− F

(x+ y

2

)∥∥∥ ≤ f(x) + f(y)

2
− f

(x+ y

2

)
holds for all x, y ∈ D. Obviously, the above inequality may be investigated without
any regularity assumptions upon F and f . One can easily check that in the case where
Y = IR a given map is a delta-convex if and only if it is a difference of two convex
functions. The class of maps introduced by Veselý and Zajiček is a generalization (for
maps taking values in vector spaces) of functions which may be representable as a
differences of two convex functions.

Modifying the inequality (2) accordingly, we can consider: delta convex maps in the
sense of Jensen [41], delta (s, t)-convex maps (O7), delta subadditive maps [40], (IV),
delta Schur convex maps (O8) e.t.c. as a natural generalization of a class of functions
which are a difference of two convex functions in the sense of Jensen, (s, t)-convex
functions, subadditive functions and Schur convex functions.

The support and separation theorems strictly related to a classical Hahn-Banach
theorem have applications in many branches of modern functional analysis, convex
geometry, optimization theory and economics. The support theorems lead to the rep-
resentation of convex functions as the pointwise maximum of affine functions, subaddi-
tive functions as the pointwise maximum of additive functions and convex sets as the
intersection of half spaces. From the appropriate version of the support theorem we
can deduce the nonemptyness of the subgradient of a convex function at a given point
and the Fenchel-Moreau duality theorem which has many applications in optimization
theory, financial mathematics and economics.

A main tool to prove the support theorems is to use the Hahn-Banach extension
theorem or sandwich theorem or one of their generalizations ([8], [11], [12], [18], [19],
[22], [35]-[38], [58], [67], [68], [79], [88]-[93], [105], [106], [111], [115], [116]). A survey of
results concerning the Hahn-Banach theorem is contained in [7]. A classical separation
theorem of Kakutani [57] says that two disjoint convex sets in a real linear space can
be separated by a halfspace i.e. a convex set with the convex complement. This
theorem is known as a geometric version of the Hahn-Banach theorem. The separation
problem was intensively studied by many mathematicians. A classical result is the
S. Mazur and W. Orlicz theorem [79], which was later generalized by R. Kaufman
[58] and then further developed by P. Kranz [68]. In 1978 roku G. Rodé [105] proved
an abstract version of the Hahn-Banach theorem to setting of convexity defined in
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terms of families of commuting operations. To present this theorem we introduce a
few necessary notions.

Let X be a non-empty set, m ∈ IN. Denote by Pm(X) the family of all pairs
(σ, s) such that σ : Xm → X is an arbitrary function and there exist s0 ∈ IR and
s1, . . . , sm ∈ [0,∞) such that s : IRm → IR is an affine function of the form:

s(y1, . . . , ym) := s0 + s1y1 + . . .+ smym.

Let P(X) := ∪m∈NPm(X) and let Π ⊆ P(X) be a fixed subset. Put Πm := Π ∩
Pm(X), m ∈ N. The set Π is commutative if for any m,n ∈ N, the operations (σ, s) ∈
Πm, (τ, t) ∈ Πn commute i.e.

σ(τ(x11, . . . , x
1
n), . . . , τ(xm1 , . . . , x

m
n )) = τ(σ(x11, . . . , x

m
1 ), . . . , σ(x1n, . . . , x

m
n ))

for all xji ∈ X, i = 1, . . . , n, j = 1, . . . ,m and

s(t(y11, . . . , y
1
n), . . . , t(ym1 , . . . , y

m
n )) = t(s(y11, . . . , y

m
1 ), . . . , s(y1n, . . . , y

m
n ))

for all yji ∈ IR, i = 1, . . . , n, j = 1, . . . ,m.

A function f : X → [−∞,∞) is called Π-convex if

f(σ(x1, . . . , xm)) ≤ s0 + s1f(x1) + . . .+ smf(xm),

for all m ∈ N, (σ, s) ∈ Πm and x1, . . . , xm ∈ X. f is said to be a Π-concave if the
function −f is Π-convex. If f is at the same time Π-convex and Π-concave then we
say that it is a Π-affine function.

Theorem 3 ([105], G. Rodé, 1978) Let Π ⊆ P(X) be a commutative family of
operations and let f : X → IR be a Π-convex function. Let

M(Π, f) := {g : X → [−∞,∞) | g is Π-concave and g ≤ f}.

Then any maximal element of M(Π, f) is a Π-affine function.

The above result and its generalization (see P. Volkmann, H. Weigel [122]) is one
of the most general versions of the Hahn-Banach theorem and its simple proof can
be found in the paper [67] by König. The geometric version of Róde theorem was
proved by Páles [93] whereas the necessary and sufficient conditions for the separation
by Π-convex, Π-concave and Π-affine functions can be found in the paper [88].
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The support and separation problems for t-Wright convex functions

The papers (I)-(III) are devoted to the problem of support and separation for t-
Wright convex and t-Wright concave functions and the applications of the obtained
results to the characterizations of some subclasses of the class of t-Wright convex
functions. In the paper (I) we deal with a problem of separation for t-Wright convex
and t-Wright concave functions and we prove a support theorem.

A separation theorem for t-convex functions, so in particular, also for convex func-
tions in the sense of Jensen, is a consequence of Rodé’s theorem. Unfortunately, Rodé’s
theorem does not apply to the t-Wright convex functions. The following theorem gen-
eralizes the analogical theorem for convex functions in the sense of Jensen (t = 1

2
):

Theorem 4 ((I), Theorem 2) Let X be a linear space over the field IK, where IQ(t) ⊆
IK ⊆ IR and let D ⊆ X be a t-convex set. If f : D → IR is a t-Wright convex function,
g : D → IR is a t-Wright concave function and

g(x) ≤ f(x), x ∈ D,

then there exists a t-Wright affine function a : D → IR satisfying

g(x) ≤ a(x) ≤ f(x), x ∈ D.

Recall, that a function ay : D → IR is called a support function of the function
f : D → IR at the point y ∈ D if it fulfills conditions

(i) ay(y) = f(y),

(ii) ay(x) ≤ f(x) for x ∈ D.

It is known that every t-convex function (convex function in the sense of Jensen)
can be supported at any algebraically internal point of the domain by a t-affine function
(affine function in the sense of Jensen). This theorem is also a consequence of Rodé’s
result, and alternative proofs of it can be found in the papers [62], [63], [70], [86]. In
these proofs the key fact is used, that every function convex in the sense of Jensen
defined on an algebraically open and convex set and taking values in the set [−∞,∞)
is either identically equal to −∞ or takes only real values. It is easy to observe that
for t ∈ (0, 1) \ {1

2
} the function f : IR→ [−∞,∞) given by formula

f(x) =

{
0 , x = x0
−∞ , x 6= x0

is t-Wright convex. The proof of a support theorem in this case required the use of
a new method. The theorem that we present below is the key tool. To present this
theorem we introduce a few necessary notions.
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For a given point y ∈ D let Dy := (2y−D)∩D. It is a maximal set symmetric with
respect to y contained in D (i.e. Dy = 2y −Dy). The set Dy inherits convexity from
the set D. Next, we define recursively the sequences of means Mn, Nn : D ×D → D

M1(x, z) = M(x, z) := tx+ (1− t)z, N1(x, z) = N(x, z) := (1− t)x+ tz,

and next

Mn+1(x, z) := M(Mn(x, z), Nn(x, z)), Nn+1(x, z) := N(Mn(x, z), Nn(x, z)).

Obviously,Mn(x, z) = Nn(z, x), Mn(x, x) = Nn(x, x) = x, x, z ∈ D, n ∈ N. Moreover,
if f : D → IR is a t-Wright convex function, then for all x, z ∈ D and n ∈ N we have

f(Mn+1(x, z)) + f(Nn+1(x, z)) ≤ f(Mn(x, z)) + f(Nn(x, z)).

Therefore, for all x, z ∈ D, there exists the limit:

lim
n→∞

[f(Mn(x, z)) + f(Nn(x, z))].

The finiteness of the above limit plays a key role in further considerations.

Theorem 5 ((I), Theorem 3) Let X be a linear space over the field IK where IQ(t) ⊆
IK ⊆ IR and let D ⊆ X be a t-convex set. Assume that f : D → IR is a t-Wright convex
function. If y ∈ D and

(?) lim
n→∞

[f(Mn(x, 2y − x)) + f(Nn(x, 2y − x))] > −∞ for x ∈ Dy,

then the function Ay : Dy → IR given by the formula

(3) Ay(x) = lim
n→∞

[f(Mn(x, 2y − x)) + f(Nn(x, 2y − x))], x ∈ Dy

is t-Wright affine. If, moreover, y ∈ algintIQ(t)
(D), then the formula (3) defines a

t-Wright affine function Ay : X → IR.

The proof of the previous theorem was preceded by several technical lemmas which
allow us to state that the function Ay given by formula (3) is t-Wright affine.

Observe that, if f is a convex function in the sense of Jensen (t = 1
2
) then for an

arbitrary x ∈ Dy we have
Ay(x) = 2f(y), x ∈ Dy.

In the paper (II, Observation 1) we showed more. Namely, if y ∈ algintIQ(t)
(D) then

the function Ay : X → IR given by formula (3) has the form

Ay(x) = 2f(y) + a2(y − x, y − x), x ∈ X,
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where a2 : X × X → IR is a bi-additive and symmetric function. Moreover, since
a2 is a function obtained by applying the generalized version of the Lajko’s theorem
(Theorem 2) so in addition

a2(tx, (1− t)x) = 0 for x ∈ X.

Using the separation theorem (Theorem 4) and Theorem 5 we get the following
support theorem

Theorem 6 ((I), Theorem 4) Let X be a linear space over the field IK, where IQ(t) ⊆
IK ⊆ IR and let D ⊆ X be a t-convex set. Assume that f : D → IR is a t-Wright convex
function and y ∈ D. Then there is a t-Wright affine support function of f|Dy at y i.e.
the function ay : Dy → IR satisfying

(i) ay(y) = f(y),

(ii) ay(x) ≤ f(x) for x ∈ Dy,

(iii) ay(tx+ (1− t)z) + ay((1− t)x+ tz) = ay(x) + ay(z) for x, z ∈ Dy

if and only if

(?) lim
n→∞

[f(Mn(x, 2y − x)) + f(Nn(x, 2y − x))] > −∞ for x ∈ Dy.

Moreover, if y ∈ algintIQ(t)
(D) and the condition (?) holds, then there is a t-Wright

affine support function ay : D → IR of f at y defined on the whole domain D.

Remark 1 An example [74, Example] shows that a t-Wright convex function does not
need to satisfy the condition (?).

It follows from the proof of the above theorem that the support function can be
estimated from above and from below in the following manner

Ay(x)− f(2y − x) ≤ ay(x) ≤ f(x), x ∈ Dy.

In the case where f is a function, convex in the sense of Jensen we get the estimation

2f(y)− f(2y − x) ≤ ay(x) ≤ f(x), x ∈ Dy.

The above estimation is very useful, in particular, if the function f is bounded on the
set Dy, then the support function ay inherits this property.

The next theorem gives the conditions equivalent to the existence of a support at
a given point for functions defined on IQ(t)-algebraically open sets. It turns out that
the existence of a support function at one point guarantees its existence at any point.
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Theorem 7 ((I), Theorem 5) Let X be a linear space over the field IK, where IQ(t) ⊆
IK ⊆ IR and let D ⊆ X be a IQ(t)-algebraically open and t-convex set. Assume that
f : D → IR is a t-Wright convex function. Then the following conditions are equivalent
to each other:

(i) there exists the point y ∈ D such that

(?) lim
n→∞

[f(Mn(x, 2y − x)) + f(Nn(x, 2y − x))] > −∞, x ∈ Dy;

(ii) there exists t-Wright concave function g : D → IR such that

g(x) ≤ f(x), x ∈ D;

(iii) for an arbitrary point y ∈ D the condition (?) holds true;
(iv) for an arbitrary point y ∈ D there exists a t-Wright affine support of f .

Support and separation theorems have many consequences. In the paper (II) we give
the applications of the proved theorems to the characterization of some subclasses of the
class of all t-Wright convex functions. In the paper [66] Maksa, Nikodem and Páles gave
the algebraic conditions (dependent on the algebraic structure of the number t ∈ (0, 1))
which imply that any t-Wright convex function is convex in the sense of Jensen. The
following theorem gives the topological necessary and sufficient conditions under which
any t-Wright convex function is convex in the sense of Jensen.

Theorem 8 ((II), Theorem 5) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let D ⊆ X be a IQ(t)-algebraically open and IQ(t)-convex. As-
sume that f : D → IR is a t-Wright convex function. Then f is convex in the sense
of Jensen if and only if for an arbitrary point y ∈ D there exists the set Uy ⊆ D
symmetric with respect to y, such that y ∈ algintIQ(t)

(Uy) and the function

Uy 3 x −→ f(x) + f(2y − x)

is bounded from below.

Clearly, any function which is locally bounded from below satisfies the above condition.
In locally-convex linear topological space a more general theorem holds true:

Theorem 9 ((II), Theorem 9) Let D be an open and convex subset of a real locally
convex linear-topological space, and let f : D → IR be a t-Wright convex function. If f
is bounded from below on a neighborhood of some point x0 ∈ D then it is convex in the
sense of Jensen.
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The next theorem and corollary give further necessary and sufficient conditions on
the convexity in the sense of Jensen of a t-Wright convex function.

Theorem 10 ((II), Theorem 6) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let D ⊆ X be a IQ(t)-algebraically open and IQ(t)-convex set.
Assume that f : D → IR is a t-Wright convex function. Then f is a convex function
in the sense of Jensen if and only if there exists a function Φ : D → IR such that

Φ
(x+ y

2

)
≤ f(x) + f(y) for x, y ∈ D.

Corollary 1 ((II), Corollary 1) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let D ⊆ X be a IQ(t)-algebraically open and IQ(t)-convex set.
Assume that f : D → IR is a t-Wright convex function. Then f is a convex function in
the sense of Jensen if and only if there exists a convex function in the sense of Jensen
g : D → IR such that

g(x) ≤ f(x), x ∈ D.

It turns out that the function f in Theorems 9, 10 and Corollary 1 does not need
be a t-convex. In the paper (II) we give a suitable example.

The next theorem states that the condition (?) in fact characterizes certain impor-
tant subclass of the class of t-Wright convex functions.

Theorem 11 ((II), Theorem 10) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let D ⊆ X be a IQ(t)-algebraically open and IQ(t)-convex set.
Assume that f : D → IR is a t-Wright convex function. Then there exists the point
y ∈ D such that

(?) lim
n→∞

[f(Mn(x, 2y − x)) + f(Nn(x, 2y − x))] > −∞ for all x ∈ Dy

if and only if
f(x) = a(x) + g(x), x ∈ D,

where a : D → IR is a t-Wright affine function and g : D → IR is a convex function in
the sense of Jensen.

Using the separation theorem (Theorem 4) we obtain the following majorization
result:

Theorem 12 ((II), Theorem 11) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let D ⊆ X be a IQ(t)-algebraically open and IQ(t)-convex set.
Assume that f : D → IR is a t-Wright convex function and g : D → IR is a t-Wright
concave function. If

g(x) ≤ f(x), for x ∈ D,
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then there exist: a convex function in the sense of Jensen F : D → IR, a concave
function in the sense of Jensen G : D → IR and a t-Wright affine function a : D → IR
such that

f(x) = a(x) + F (x), g(x) = a(x) +G(x), x ∈ D.

The next theorem from the paper (II) establishes the necessary and sufficient con-
ditions under which a t-Wright convex function is a Wright convex function.

Theorem 13 ((II), Theorem 12) Let D be an algebraically open and convex subset
of a real linear space X and let f : D → IR be a t-Wright convex function. Then the
following conditions are pairwise equivalent:

(i) f is a Wright convex function;

(ii) there exist: an additive function a : X → IR and convex function w : D → IR
such that

f(x) = a(x) + w(x), x ∈ D;

(iii) for arbitrary x, y ∈ D:

lim
α→ 1

2

[f(αx+ (1− α)y) + f((1− α)x+ αy)] = 2f
(x+ y

2

)
;

(iv) there exists the function Φ : D → [0,∞) such that∧
x,y∈D

∨
λxy∈(0, 12 )

∧
λ∈( 1

2
−λxy , 12+λxy)

|f(λx+ (1− λ)y) + f((1− λ)x+ λy)| ≤ Φ
(x+ y

2

)
.

The above theorem provides further arguments to consideration the introduced by
Kominek [66] subclass W0 of the class of t-Wright convex functions defined as follows:

W0 := {f : D → IR : f = a+ g, where a : X → IR is an additive function,
g : D → IR is continuous and convex}.

Obviously, if D is an open and convex subset of a finite-dimensional space, then the
classW0 coincides with the class of Wright convex functions, but in infinite-dimensional
spaces this class is a substantially smaller.

Theorem 14 ((II), Theorem 13) Let D be an algebraically open and convex subset
of a real linear space X and let f : D → IR be a t-Wright convex function. Then the
following conditions are pairwise equivalent

(i) f ∈ W0;
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(ii) there exists the point y ∈ D such that

lim
x→y

[f(x) + f(2y − x)] = 2f(y);

(iii) there exists the point y ∈ D and symmetric with respect to y its neighborhood 2

Uy ⊆ X such that the function

Uy ∩D 3 x −→ f(x) + f(2y − x)

is bounded.

In the paper (III) we consider analogical problems as in (I) and (II) for t-Wright
convex functions defined on the whole space. The assumption that the domain of the
considered functions is the whole space is important, and in most theorems can not
be omitted. Let us observe that if t 6= 1

2
then the function f : X → IR is a t-Wright

convex if and only if

f(x) + f(y) ≤ f
( t

2t− 1
x+

1− t
2t− 1

y
)

+ f
( 1− t

2t− 1
x+

t

2t− 1
y
)

for x, y ∈ X.

In the whole paper (III) we assume that t 6= 1
2
. In spite of using there the analogous

method as in the paper (I) and (II) the results contained therein are so surprising and
unexpected that it is worth to quoting them here. Let us start with the following
separation theorem:

Theorem 15 ((III), Theorem 2) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR, let f : X → IR be a t-Wright convex function, and let g : X → IR be a
t-Wright-concave function. If

f(x) ≤ g(x), x ∈ X,

then there exists a t-Wright affine function a : X → IR such that

f(x) ≤ a(x) ≤ g(x) for x ∈ X.

It can be shown (using e.g. Theorem 7.1 from [62]) that in the case where f and
−g are convex functions in the sense of Jensen, defined on the whole linear space (over
the field of real numbers) then the inequality f ≤ g implies that f and g are affine
functions in the sense of Jensen differing by a constant.
2A printing mistake has crept into the paper (II), there is in it an assumption that y ∈ algintIR(Uy),

although the proof was carried out for the set Uy which is open in the space X.
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Let us define recursively the sequences of maps Kn, Ln : X ×X → X by

K1(x, z) = K(x, z) =
t

2t− 1
x+

t− 1

2t− 1
z, L1(x, z) = L(x, z) =

t− 1

2t− 1
x+

t

2t− 1
z,

and

Kn+1(x, z) := K(Kn(x, z), Ln(x, z)), Ln+1(x, z) := L(Kn(x, z), Ln(x, z)), for n ∈ IN.

Obviously, Kn(x, z) = Ln(z, x), Kn(x, x) = Ln(x, x) = x, x, z ∈ X, n ∈ N. Moreover,
if f : X → IR is a t-Wright convex function, then for all x, z ∈ X and n ∈ N we have

f(Kn(x, z)) + f(Ln(x, z)) ≤ f(Kn+1(x, z)) + f(Ln+1(x, z)).

This time we get the existence of the limit:

lim
n→∞

[f(Kn(x, z)) + f(Ln(x, z))],

for all x, z ∈ X, and the following theorem can be interpreted as a support theorem
for t-Wright concave functions:

Theorem 16 ((III), Theorem 5) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let f : X → IR be a t-Wright convex function (t 6= 1

2
), y ∈ X.

Then there exists a t-Wright affine function ay : X → IR such that

ay(y) = f(y) and f(x) ≤ ay(x), x ∈ X

if and only if

(�) lim
n→∞

[f(Kn(x, 2y − x)) + f(Ln(x, 2y − x))] <∞, x ∈ X.

In the case where f is a convex function in the sense of Jensen, the existence of
an affine function in the sense of Jensen ay : X → IR fulfilling f(y) = ay(y), f(x) ≤
ay(x), x ∈ X is possible only in the case where f is an affine function in the sense of
Jensen but then this theorem is trivial. However, there are t-Wright convex functions
fulfilling condition (�) which are not t-Wright affine. This property, for example, has
the mentioned function constructed by Maksa, Nikodem and Páles in the paper [74].
Clearly, each such a function has to be discontinuous at every point.

Two conditions equivalent to the condition (�) gives the following theorem

Theorem 17 ((III), Theorem 6) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let f : X → IR be a t-Wright convex functions. Then the following
conditions are pairwise equivalent

(a) there exists a point y ∈ X such that

lim
n→∞

[f(Kn(x, 2y − x)) + f(Ln(x, 2y − x))] <∞ for x ∈ X;
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(b) there exists a t-Wright concave function g : X → IR, such that

f(x) ≤ g(x) for x ∈ X;

(c) for an arbitrary y ∈ X we have

lim
n→∞

[f(Kn(x, 2y − x)) + f(Ln(x, 2y − x))] <∞ for x ∈ X.

The next theorem gives the necessary and sufficient conditions under which any t-
Wright convex function is convex in the sense of Jensen. The example given by Maksa,
Nikodem and Páles shows that such functions exist and have pathological properties.

Theorem 18 ((III), Theorem 7) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let f : X → IR be a t-Wright convex function. Then f is a convex
function in the sense of Jensen if and only if there exists a function Ψ : X → IR such
that

f(x) + f(y) ≤ Ψ
(x+ y

2

)
, x, y ∈ X.

As a consequence of the above theorem and Theorem 9 we get the necessary and
sufficient conditions under which any t-Wright convex function is affine in the sense of
Jensen.

Theorem 19 ((III), Theorem 8) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let f : X → IR be a t-Wright convex function. Then f is an affine
function in the sense of Jensen if and only if there exists a function G : X → IR such
that

|f(x) + f(y)| ≤ G
(x+ y

2

)
, x, y ∈ X.

In particular, the following theorem follows from Theorem 18.

Theorem 20 ((III), Theorem 9) Let X be a linear space over the field IK, where
IQ(t) ⊆ IK ⊆ IR and let f : X → IR be a t-Wright convex function. If f is bounded from
above then it is concave in the sense of Jensen.

Therefore, we see that the concavity in the sense of Jensen of a discontinuous t-
Wright convex function, bounded from above on the whole real line in the example
given by Maksa, Nikodem and Páles, although it surprises, is a normal behavior. In
view of the above theorem it was enough to provide any discontinuous t-Wright convex
function, bounded from above on the whole real line.

I follows from the proof of the above theorem that it is enough to postulate, the
boundedness from above of the function f , intuitively "far away". In the case where
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X is a linear-topological space it is enough to assume that the function f is bounded
from above on some proper neighborhood of zero.

It turns out that the condition (�) characterizes some subclass of the class of t-
Wright convex functions defined on the whole space. The following theorem speaks
about it.

Theorem 21 Let X be a linear space over the field IK, where IQ(t) ⊆ IK ⊆ IR and let
f : X → IR be a t-Wright convex function. Then f satisfies the condition (�), i.e.

lim
n→∞

[f(Kn(x, 2y − x)) + f(Ln(x, 2y − x))] <∞, x ∈ X,

if and only if f has the form

f(x) = a(x) + g(x), x ∈ X,

where a : X → IR is a t-Wright affine function and g : X → IR is a concave function
in the sense of Jensen.

The last characterization concerns the t-Wright convex functions which are ma-
jorized by t-Wright concave ones.

Theorem 22 Let X be a linear space over the field IK, where IQ(t) ⊆ IK ⊆ IR. Assume
that f : X → IR is a t-Wright convex function and g : X → IR is a t-Wright concave
function. If

f(x) ≤ g(x) for x ∈ X,

then there exist: concave functions in the sense of Jensen F,−G : X → IR and a
t-Wright affine function a : X → IR such that

f(x) = a(x) + F (x), g(x) = a(x) +G(x), x ∈ X.
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The equivalent of the Kranz theorem for delta-subadditive mappings

In the paper (IV) we consider the problems of separation and support for delta-
subadditive and delta superadditive maps. Ger in [40] was the first who considered the
delta-subadditive maps. The discussed paper (IV) is a partial generalization of results
obtained by Kranz [68], Z. Gajda and Kominek [37].

Assume that (Y, ‖ · ‖) is a real Banach space and (S, ·) is a weakly commutative
semigroup i.e. a semigroup satisfying the condition∧

x,y∈S

∨
n∈N

(x · y)2
n

= x2
n · y2n .

The powers of the form x2
n are defined recursively: x20 = x, x2

k+1
= x2

k · x2k . The
concept of weakly commutative semigroup was introduced by Józef Tabor in [114].
It is clear that every commutative group is weakly commutative but there exist non-
commutative semigroups and even groups which are weekly commutative.

Definition 2 A map F : S → Y is called delta-subadditive with a control function
f : S → IR (we will write shortly (F, f) ∈ Ds(S)), if the inequality

‖F (x) + F (y)− F (x · y)‖ ≤ f(x) + f(y)− f(x · y)

holds for every x, y ∈ S. In the case where (−F,−f) ∈ Ds(S) we say that F is a
delta-superadditive with a control function f .

It is easy to check that if (F, f), (−F,−f) ∈ Ds(S) then the mappings f and F have
to be additive.

The classical theorem on separation obtained by Kranz has the following form:

Theorem 23 ([68], Kranz, 1972) Let (S, ·) be a commutative semigroup. Assume
that f : S → IR is a subadditive function, i.e.

f(x · y) ≤ f(x) + f(y) for x, y ∈ S,

g : S → IR is a superadditive function, i.e.

g(x · y) ≥ g(x) + g(y) for x, y ∈ S

and
g(x) ≤ f(x) for x ∈ S.

Then there exists an additive function a : S → IR such that

g(x) ≤ a(x) ≤ f(x) for x ∈ S.
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Let (Y, ‖ · ‖) be a real normed space. Consider the linear space Y := Y × IR, where
the addition and scalar multiplication are defined coordinatewise. Let us recall that
for a given positive number ε the convex cone defined by formula

Kε := {(x, t) ∈ Y : ε‖x‖ ≤ t}

is called the Lorentz cone. This cone induces in Y a partial order in the following
manner:

(x1, t1) �Kε (x2, t2)⇔ ε‖x2 − x1‖ ≤ t2 − t1.
This partial order is compatible with the linear structure of Y , i.e.

• x �Kε y ⇒ x+ z �Kε y + z for x, y, z ∈ Y ,
• x �Kε y ⇒ αx �Kε αy for x, y ∈ Y , α ≥ 0.

Note that, defining for given maps F : S → Y and f : S → IR the map F : S → Y
via the formula

F (x) := (F (x), f(x)), x ∈ S,
we can rewrite the inequality defining the notion of delta-subadditivity of the map F
with a control function f by the formula

F (x · y) �K1 F (x) + F (y), x, y ∈ S,

where K1 = {(x, t) ∈ Y : ‖x‖ ≤ t}. This remark shows that delta-subadditive maps
generalize subadditive maps by replacing the classical inequality by the relation of
partial order induced by the Lorentz cone. Classic results for subadditive functions are
obtained by putting F = 0. For delta-subadditive maps we have the following version
of the separation theorem

Theorem 24 ((IV), Theorem 1) Let (S, ·) be a commutative semigroup, and let
(Y, ‖ · ‖) be a real Banach space. Assume that F : S → Y is a delta-subadditive
map with a control function f : S → IR, and G : S → Y is a delta-superadditive map
with a control function g : S → IR. Suppose that (G, g) �K1 (F, f), i.e.

‖F (x)−G(x)‖ ≤ f(x)− g(x), x ∈ S.

If, moreover,
sup{f(x)− g(x) : x ∈ S} <∞,

then there exist unique additive mappings A : S → Y and a : S → IR such that

(G(x), g(x)) �K1 (A(x), a(x)) �K1 (F (x), f(x)), x ∈ S.

The above theorem generalizes the Theorem 1 from the paper [37] by Gajda and
Kominek. As an application we obtain an easy proof of the classical Hyers-Ulam
stability result for the Cauchy’s equation.
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Theorem 25 ((IV), Corollary 2) Let (S, ·) be a weekly commutative semigroup and
let (Y, ‖ · ‖) be a real Banach space. If F : S → Y is an ε-additive map, i.e.

‖F (x) + F (y)− F (x · y)‖ ≤ ε for x ∈ S,

where ε > 0, then there exists a unique additive map A : S → Y such that

‖F (x)− A(x)‖ ≤ ε for x ∈ S.

The stability problem was formulated by S. Ulam in 1940 who asked whether if we
distort the Cauchy’s functional equation, i.e. we will postulate its fulfillment by a given
function with some accuracy is there a solution to the Cauchy’s equation uniformly
close to this function? A positive solution to the Ulam’s problem, for functions mapping
one Banach space into another, was given first by D. H. Hyers [50].

We obtained the necessary and sufficient conditions for the existence of a support
function at a given point for maps defined on abelian groups uniquely divisible by 2.
An abelian group (G,+) is said to be a uniquely 2-divisible if for an arbitrary x ∈ G
there exists a unique element y ∈ G such that 2y = x; this element is denoted by 1

2
x.

Using the support theorem proved in the paper (O7, part 5, p. 29) we get the following
theorem.

Theorem 26 ((IV), Theorem 3) Let (X,+) be a uniquely divisible by 2 abelian
group, and let (Y, ‖ · ‖) be a real Banach space. Let F : X → Y be a delta-subadditive
map with a control function f : X → IR and let y ∈ X. Then there exist additive maps
Ay : X → Y , ay : X → IR such that

‖F (x)− Ay(x)‖ ≤ f(x)− ay(x) for x ∈ X,

and
Ay(y) = F (y), ay(y) = f(y),

if and only if
f(yn) = nf(y) for n ∈ N.

A support theorem for sublinear functions was proved by Berz in the paper [15].
An analogous result for real-valued subadditive and IN-homogeneous functions defined on
weakly commutative semigroup was done by Gajda and Kominek [37].
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A support theorem for generalized convexity

In the literature one can find many generalizations of the notion of t-convexity,
convexity in the sense of Jensen and convexity, which consist in distorting the right
hand side of the inequality with the left hand side unchanged (e.g. the concept of an
approximate-convexity, strong-convexity, delta-convexity, convexity in the sense of Wright
and many others). In the paper (V) the definition of the class of functions that includes
all classes of this type has been proposed.

Let D be a t-convex (convex) subset of a real linear space, and let w : D×D×[0, 1]→
IR be a given function. For a given number t ∈ [0, 1], a function f : D → IR is said to be

(ω, t)-convex, if

(4) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + ω(x, y, t) for x, y ∈ D;

(ω, t)-concave, if

tf(x) + (1− t)f(y) + ω(x, y, t) ≤ f(tx+ (1− t)y) for x, y ∈ D;

(ω, t)-affine, if

tf(x) + (1− t)f(y) + ω(x, y, t) = f(tx+ (1− t)y) for x, y ∈ D.

If the above inequalities are satisfied for all numbers t ∈ [0, 1] then we say that f is
ω-convex (ω-concave, ω-affine, respectively). The notion of ω-convexity is a common
generalization of the notion of usual convexity, strong-convexity, approximate-convexity,
delta-convexity and many others. These classes of functions have been extensively studied
by many mathematicians, see for example: [10], [51], [96], [97], [107], [113], [120], [125].
We have

• ω = 0 : for convexity,

• ω(x, y, t) = −ct(1− t)‖x− y‖2, c > 0 : for strong convexity,

• ω(x, y, t) = c‖x− y‖γ, c > 0, γ ≥ 0 : for approximate-convexity,

• ω(x, y, t) = −‖tF (x) + (1− t)F (y)− F (tx+ (1− t)y)‖ : for delta-convexity,

• ω(x, y, t) = (1− t)f(x) + tf(y)− f((1− t)x+ ty) : for Wright-convexity.

Note that, without any additional assumptions on ω nothing can be said about the
function f . Indeed, an arbitrary function f : D → IR is an (ω, t)-affine, so in particular
(ω, t)-convex and (ω, t)-concave with the function

ω(x, y, t) = f(tx+ (1− t)y)− tf(x)− (1− t)f(y).

The main result of the paper (V) is the theorem providing the necessary and sufficient
conditions on ω for the existence of an (ω, t)-affine support function at a point.
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Theorem 27 ((V), Theorem 3) Let X be a linear space over the field IK, where IQ(t) ⊆
IK ⊆ IR, let D be a t-convex set and let y ∈ algintIQ(t)

(D). Assume, that f : D → IR is an
(ω, t)-convex function, where ω : D ×D × [0, 1] → IR. Then there exists an (ω, t)-affine
support function ay : D → IR of f at y such that f − ay is t-convex if and only if for all
u, v, x, z ∈ D and s ∈ {t, 1− t} the function ω satisfies the conditions:

(a) ω(y, y, t) = 0,
(b)ω(x, z, t) = ω(z, x, 1− t),

(c)
ω(u, z, s) + (1− s)ω(v , z, s)− ω(su+ (1− s)v, z, s)

≤ sω(u, v, s)− ω(su+ (1− s)z, sv + (1− s; )z, s).

For ω-convex functions a support theorem has the form

Theorem 28 ((V), Theorem 5) Let D be a convex subset of a real linear space and
let y ∈ algint(D). Assume that f : D → IR is an ω-convex function, where ω :
D × D × [0, 1] → IR. Then there exists an ω-affine support function ay : D → IR such
that f − ay is convex if and only if for all u, v, x, z ∈ D and all s, t ∈ [0, 1] the function ω
satisfies the conditions:

(i) ω(y, y, t) = 0,
(ii) ω(x, z, t) = ω(z, x, 1− t),

(iii)
sω(u, z, t) + (1− s)ω(v , z, t)− ω(su+ (1− s)v, z, t)

≤ tω(u, v, s)− ω(tu+ (1− t)z, tv + (1− t; )z, s).

It turns out that the existence of an (ω, t)-affine (ω-affine) support at arbitrary
point characterizes (ω, t)-convex (ω-convex) functions, so similarly as for convex functions,
a given map has an (ω, t)-affine (ω-affine) support at arbitrary point if and only if it
is (ω, t)-convex (ω-convex). Therefore, any (ω, t)-convex (ω-convex) function has the
representation as the pointwise maximum of (ω, t)-affine (ω-affine) functions which are
majorized by it.

As a consequence of support theorems we obtain the following representation theorem
which is in the spirit of Ng’s theorem.

Theorem 29 ((V), Theorem 7) Let X be a linear space over the field IK, where IQ(t) ⊆
IK ⊆ IR (a real linear space) and let D be a t-convex (convex) set such that algintIQ(t)

(D) 6=
∅ (algint(D) 6= ∅). Assume that f : D → IR is an (ω, t)-convex (ω-convex) function, where
ω : D × D × [0, 1] → IR. Then there exist: t-convex (convex) function h : D → IR and
(ω, t)-affine (ω-affine) function a : D → IR such that

f(x) = a(x) + h(x) for x ∈ D,

if and only if for some point y ∈ algintIQ(t)
(D) (y ∈ algint(D)) ω satisfies the conditions

(a)-(c) ((i)-(iii)).

The direct consequence of the above theorem is the following result
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Theorem 30 ((V), Theorem 8) Let X and D be as in the previous theorem, let f :
D → IR be an (ω, t)-convex (ω-convex) function, and let ω : D × D × [0, 1] → R satisfy
the conditions (a)-(c) ((i)-(iii)) for some point y ∈ algintIQ(t)

(D) (y ∈ algint(D)). If

ω(x, z, t) ≥ 0 for x, z ∈ D, (ω(x, z, t) ≥ 0 for x, z ∈ D, t ∈ [0, 1])

then f is a delta t-convex (delta-convex), i.e. there exist: t-convex (convex) functions
g, h : D → IR such that

f(x) = g(x)− h(x), x ∈ D.
IfD is a convex subset of an inner product space then the function ω : D×D×[0, 1]→

IR given by the formula
ω(x, y, t) = ct(1− t)‖x− y‖2

satisfies the conditions (a)-(c) and (i)-(iii). Therefore, using the main results of the paper
(V) we get the support theorems for strongly t-convex functions (strongly convex) and
approximate t-convex (approximate-convex) (for γ = 2). An analogous theorem for t = 1

2

has been proved in the paper [10].
The next consequence of the main results of the paper (V) is a theorem which gives a

characterization of inner product spaces. The following theorem gives the necessary and
sufficient conditions under which a norm in a real linear space can be defined from an
inner product.
Theorem 31 ((V), Theorem 14) Let (X, ‖ · ‖) be a real normed space. The following
conditions are equivalent to each other:
(α) A map ω : D ×D × [0, 1]→ IR given by formula

ω(x, y, t) = ct(1− t)‖x− y‖2, x, y ∈ X
satisfies the inequalities (c) from Theorem 27 for some c > 0 and t ∈ (0, 1);
(β) there exist a number t ∈ (0, 1) and a function g : X → IR such that

‖x− y‖2 = tg(x) + (1− t)g(y)− g(tx+ (1− t)y) for x, y ∈ X;

(γ) (X, ‖ · ‖) is an inner product space.
The most well-known result of this type is due to P. Jordan and J. von Neumann [56]
which states that a real normed space is an inner product space if and only if it satisfies
the parallelogram law i.e.

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 for x, y ∈ X.
A survey of analogous results can be found e.g. in monograph by D. Amir [7] (see also
[6]).

The last application of Theorem 27 shows that not for all functions ω there exist the
solutions to the inequality (4). Namely

Theorem 32 ((V), Theorem 15) Let (X, ‖·‖) be a real normed space, t ∈ (0, 1), c > 0.
There is no function f : X → IR satisfying the inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− c‖x− y‖ for x, y ∈ X.
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An abstract version of the Hahn-Banach theorem and support theorem

A joint paper with Zsolt Páles (VI) was written mainly during my stay at the Uni-
versity of Debrecen. The aim of the paper was to prove a support theorem for a possibly
wide class of maps, defined on abstract structures and taking values in partially ordered
structures. A direct motivation to this paper was the paper (O7) (see part 5, p. 29).

Since the domains of the considered maps are general algebraic structures we in-
troduce intuitive concepts of convex sets and extremal points for subsets of a given set
without a linear structure. Let Γ and X be nonempty sets, and let n : Γ→ N be a given
function. Assume that w is a given family of operations on X

w = {wγ : Xn(γ) → X | γ ∈ Γ}.

We say that E ⊆ X is w-convex if

wγ(E
n(γ)) ⊆ E for γ ∈ Γ.

A subset E ⊆ X is w-extreme if

w−1γ (E) ⊆ En(γ) for γ ∈ Γ.

A point p ∈ X is said to be w-extreme if the singleton {p} is an w-extreme set. It is
easy to check that the intersection of an arbitrary family of w-convex (w-extreme) sets is
an w-convex (w-extreme) set and this allows us to introduce, for arbitrary subset A, an
w-convex (w-extreme) hull of a set A as the smallest w-convex (w-extreme) set including
the set A. We denote it by the symbol convw(A) (extw(A)).

The notion of w-extreme hull leads as to introduce a counterpart of the notion of the
relative interior and boundary in the following manner

Definition 3 A point p ∈ X is said to be w-internal of X, if extw({p}) = X. The set
of w-internal points of X is called the w-interior of X and is denoted by intw(X). The
complement of intw(X) is termed the w-boundary of X and is denoted by

∂w(X) := X \ intw(X).

Generalizations of the Hahn-Banach theorem on the mapping taking values in par-
tially ordered sets require additional assumptions regarding order structures. B. Rodriguez-
Salinas and L. Bou [106] showed that sandwich type results can only be expected for
ordered vector spaces where the intervals have the so-called binary intersection property.

In the literature the most frequently appearing assumption in the theorems of the
Hahn-Banach type is the assumption that the range space is Dedekind complete i.e. every
bounded from below subset has the greatest lower bound. R. J. Silverman and T. Yen
[111] (see also [8], [18], [19], [53], [115], [116]) showed that if an order structure is induced
by a linearly closed cone (closed in the so-called core topology) then the least upper bound
property of the range space is indispensable, more precisely, an ordered vector space has
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the Hahn-Banach extension property if and only if it possesses the greatest lower bound
property.

As for the range space we will assume that (Y,≤) is a partially ordered set in which
every nonempty lower bounded chain has an infimum. If this is the case then we say
that a partially ordered set (Y,≤) is lower chain-complete. Obviously, any Dedekind
complete ordered space is a lower chain-complete but the converse is not true. Now, we
give examples of partially ordered spaces which are lower chain-complete and not complete
in the sense of Dedekind.

Let (Y,+) be an abelian group. A nonempty subsemigroup S of the group Y is said
to be pointed and salient if 0 ∈ S and S∩ (−S) ⊆ {0}, respectively. An arbitrary pointed
and salient subsemigroup S induces a partial ordering ≤S on Y by letting

x ≤S y ⇔ y − x ∈ S.

This partial order is compatible with the algebraic structure of Y in the sense that if
x ≤S y, then x+ z ≤S y + z for each z ∈ S.

A triple (Y,+, d) is called a metric abelian group if (Y,+) is an abelian group, (Y, d)
is a metric space and the metric is translation invariant, i.e.

d(x+ z, y + z) = d(x, y) for x, y, z ∈ Y.

In such a case, the metric induces a pseudo norm ‖·‖ : Y → IR+ via the standard definition
‖x‖d := d(x, 0). An important class of semigroups which are lower chain complete are the
so-called additively controllable subsemigroups.

Definition 4 Let (Y ; +; d) be a metric abelian group. We say that a subsemigroup S of
Y is additively controllable if there exists a continuous additive function a : Y → IR such
that

‖y‖d ≤ a(y), y ∈ S.

It turns out that each closed, additively controllable subsemigroup of a complete metric
abelian group is a lower chain complete. In applications (e.g. in optimization theory)
we consider the normed spaces and in a natural way a cone appears in the place of a
subsemigroup. In the paper (VI) we have shown that any partially ordered space where
the order is induced by a closed and convex cone such that int(K◦) 6= ∅ is lower chain
complete, where K◦ denotes a dual cone with K i.e.

K◦ := {φ ∈ Y ? : φ(y) ≥ 0, y ∈ K}.

An important example of a cone having this property is the so-called Lorentz cone:

Kε := {(x, t) ∈ Y × IR : ε‖x‖ ≤ t}.

Now, we present the assumptions under which we have proved the main results of
the paper (VI).
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(H) Let X be a nonempty set, (Y,≤) partially ordered set, Γ 6= ∅, n : Γ→ N, w = {wγ :
Xn(γ) → X | γ ∈ Γ} and Ω = {Ωγ : Y n(γ) → Y | γ ∈ Γ} are two given families of
operations.

A family of operations {wγ | γ ∈ Γ} is said to be a pairwise mutually distributive if
for all γ, β ∈ Γ, k ∈ {1, 2, . . . , n(γ)} and all x1, . . . , xk−1, xk+1, . . . , xn(γ), y1, . . . , yn(β) ∈ X

wγ(x1 , . . . , xk−1, wβ(y1, . . . , yn(β)), xk+1, . . . , xn(γ))
= wβ(wγ(x1, . . . , xk−1, y1, xk+1, . . . , xn(γ)), . . . ,

wγ(x1, . . . , xk−1, yn(β), xk+1, . . . , xn(γ))).

The assumption of pairwise mutually distributivity is much more weaker than the pair-
wise commutativity which was needed for the setting of the Rodé’s Theorem.

We say that a family of operations {wγ | γ ∈ Γ} is reflexive if, for all γ ∈ Γ,

wγ(x, . . . , x) = x, x ∈ X.

Under the hypothesis (H), given an w-convex set D ⊆ X, we say that f : D → Y is
(w,Ω)-convex on D if it satisfies the functional inequality

f
(
wγ(x1, . . . , xn(γ))

)
≤ Ωγ

(
f(x1), . . . , f(xn(γ))

)
(γ ∈ Γ, x1, . . . , xn(γ) ∈ D).

If f satisfies the reversed inequality

Ωγ

(
f(x1), . . . , f(xn(γ))

)
≤ f

(
wγ(x1, . . . , xn(γ))

)
(γ ∈ Γ, x1, . . . , xn(γ) ∈ D),

then we say that it is (w,Ω)-concave on D. Finally, a function f is called (w,Ω)-affine
on D if it satisfies the functional equation

f
(
wγ(x1, . . . , xn(γ))

)
= Ωγ

(
f(x1), . . . , f(xn(γ))

)
(γ ∈ Γ, x1, . . . , xn(γ) ∈ D).

The following theorem is a generalized version of the Hahn-Banach theorem for (w,Ω)-
convex maps:

Theorem 33 ((VI), Theorem 4.3) In addition to hypothesis (H), assume that

(H1) (Y,≤) is a lower chain-complete partially ordered set.

(H2) The family w consists of pairwise mutually distributive operations.

(H3) The family Ω consists of pairwise mutually distributive operations such that, for all
γ ∈ Γ, the operation Ωγ is an order automorphism in each of its variables.

Let f : X → Y be an (w,Ω)-convex function and let D ⊆ X be a nonempty w-convex
subset of X such that extw(D) = X and f |D is (w,Ω)-affine on D. Then there exists an
(w,Ω)-affine function g : X → Y such that g ≤ f and g|D = f |D.
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Assuming additionally, that the families of operations w and Ω are reflexive as a
consequence we obtain a support theorem:

Theorem 34 ((VI), Corollary 4.4) In addition to hypothesis (H), assume that

(H1+) (Y,≤) is a lower chain-complete partially ordered set.

(H2+) The family w consists of reflexive and pairwise mutually distributive operations.

(H3+) The family Ω consists of reflexive and pairwise mutually distributive operations
such that, for all γ ∈ Γ, the operation Ωγ is an order automorphism in each of its
variables.

Let f : X → Y be an (w,Ω)-convex function. Then, for all w-interior point p ∈ X, there
exists an (w,Ω)-affine function g : X → Y such that g ≤ f and g(p) = f(p).

The next consequence is a support theorem for subadditive mappings defined on
abstract structures. This theorem generalizes the theorem of Berz [15] and Theorem 26
on support for delta-subadditive maps.

Theorem 35 ((VI), Corollary 4.5) Let (X,+) be an abelian semigroup, and let (Y,+, d)
be a complete metric abelian group equipped with an ordering ≤S generated by a closed
pointed additively controllable semigroup S ⊆ Y . Let f : X → Y be a subadditive map,
i.e.

f(x+ y) ≤S f(x) + f(y) for x, y ∈ X. (1)

Assume that p ∈ X possesses the following two properties:

(i) for all n ∈ IN, f(np) = nf(p);

(ii) for all x ∈ X, there exist y ∈ X and n ∈ IN such that x+ y = np.

Then there exists an additive function g : X → Y such that g ≤S f and g(p) = f(p).

We recall here the definition of 1
2
-convex set. Let (G,+) be a uniquely 2-divisible

abelian group. A subset X of group G is said to be 1
2
-convex if for arbitrary x, y ∈ X,

1

2
(x+ y) ∈ X.

It easily follows by induction, that if X is 1
2
-convex then for all n ∈ IN and for all

k ∈ {0, 1, 2, . . . , 2n} we have
k

2n
x+ (1− k

2n
)y ∈ X.

Definition 5 Let (G,+) be a uniquely 2-divisible abelian group, X ⊆ G. We say that
p ∈ G is a relative algebraic interior point of the set X, (we write p ∈ ri(X)) if for all
x ∈ X there exists n ∈ IN such that p+ 1

2n
(p− x) ∈ X.
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Using these concepts we can formulate another support theorem

Theorem 36 ((VI), Theorem 4.8) Let X be a 1
2
-convex subset of a uniquely 2-divisible

abelian group (G,+), and let (Y,+, d) be a complete metric abelian group equipped with
an ordering ≤S generated by a closed pointed additively controllable semigroup S ⊆ Y.
Moreover, assume that n ≥ 2, a1, . . . , an : G → G and A1, . . . , An : Y → Y are two
families of additive maps with the following additional properties:

(i) ai ◦ aj = aj ◦ ai and Ai ◦ Aj = Aj ◦ Ai, for all i, j = 1, . . . , n;

(ii) a1 + . . .+ an = idG and A1 + . . .+ An = idY ;

(iii) a1(X) + . . .+ an(X) ⊆ X;

(iv) Ai is bijective with Ai(S) = S for all i ∈ {1, . . . , n}.

Let f : X → Y satisfy, for all x1, . . . , xn ∈ X, the following convexity type inequality

f
(
a1(x1) + · · ·+ an(xn)

)
≤S A1

(
f(x1)

)
+ · · ·+ An

(
f(xn)

)
.

Then, for every p ∈ ri(X), there exists a function g : G → Y such that g ≤S f , g(p) =
f(p) and, for all x1, . . . , xn ∈ X, the following functional equation holds:

g
(
a1(x1) + · · ·+ an(xn)

)
= A1

(
g(x1)

)
+ · · ·+ An

(
g(xn)

)
.

As a direct consequence of the above theorem (by specifying additive mappings and
considering an order generated by the Lorentz cone) we get the main result from the paper
(O7) which was the motivation to the above considerations.

5. Presentation of other research achievements

(a) The list of publications not included in the habilitation thesis:

(O1) A. Olbryś, On the measurability and the Baire property of t-Wright convex func-
tions, Aequationes Math. 68 (2004), no. 1-2, 28-37.

(O2) A. Olbryś, Some conditions implying the continuity of t-Wright convex func-
tions, Publ. Math. Debrecen 68 (2006), no. 3-4, 401-418.

(O3) A. Olbryś, A characterization of (t1, . . . , tn)-Wright affine functions, Comment.
Math. (Prace Mat.) 47 (2007), no. 1, 47-56.

(O4) A. Olbryś, On the boundedness, Christensen measurability and continuity of
t-Wright convex functions, Acta Math. Hungar. 141 (2013), no. 1-2, 68-77.

(O5) M. Lewicki, A. Olbryś, On non-symmetric t-convex functions, Math. Inequal.
Appl. 17 (2014), no. 1, 95-100.
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(O6) A. Olbryś, On some inequalities equivalent to the Wright-convexity, J. Math.
Inequal. 9 (2015), no. 2, 449–461.

(O7) A. Olbryś, A support theorem for delta (s,t)-convex mappings, Aequationes
Math. 89 (2015), no. 3, 937–948.

(O8) A. Olbryś, On delta Schur-convex mappings, Publ. Math. Debrecen 86 (2015),
no. 3-4, 313-323.

(O9) A. Olbryś, On separation by h-convex functions, Tatra Mt. Math. Publ. 62
(2015), 105-111.

(O10) A. Olbryś, Representation theorems for h-convexity, J. Math. Anal. Appl, 426
(2015), no. 2, 986–994.

(O11) A. Olbryś, T. Szostok, Inequalities of the Hermite–Hadamard Type Involv-
ing Numerical Differentiation Formulas, Results. Math. 67 (2015), no. 3-4,
403–416.

(O12) W. Fechner, A. Olbryś, Systems of Inequalities Characterizing Ring Homomor-
phisms, J. Funct. Spaces 2016, Art. ID 8069104, 5 pp.

(O13) A. Olbryś, On the IK-Riemann integral and Hermite-Hadamard inequalities for
IK-convex functions, Aequationes Math. 91 (2017), no. 3, 429-444.

(O14) A. Olbryś, On a problem of T. Szostok concerning the Hermite-Hadamard in-
equalities, arXiv:1808.06524 [math.CA].

(b) A description of the scientific output contained in the papers listed in item 5(a)

The paper (O3) is a part of PhD thesis. I give in it a characterization of t-Wright
affine functions of higher orders. This paper generalizes the results of Lajkó [72], who
characterized t-Wright affine functions defined on interval and taking real values. The
results of Lajkó was generalized in two directions. First we gave a form of solutions to
a much more general functional equation than Lajkó, secondly the considered maps are
defined and takes values in abstract structures.

The papers (O1), (O2), (O4) concern the continuity problem for t-Wright convex
functions. In the theory of functional equations and inequalities one of the most important
areas of research is the problem of "improving regularity" of solutions. The goal is to show
that a function satisfying a given functional equation or inequalities under possibly weak
regularity assumptions has a higher regularity. The most famous result of this type is
a theorem proved by Bernstein and Doetsch [14] in 1915 which states that each convex
function in the sense of Jensen, bounded above on a nonempty open interval is convex,
so in particular, continuous at any internal point of the domain. On the other hand,
Sierpiński’s theorem states that each Lebesgue measurable and Jensen convex function is
convex. Many generalizations of mentioned results are known, see for example [34], [42],
[62], [71], [80]. The papers (O1) and (O2) were part of the PhD thesis.
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In the paper (O1) the t-Wright convex functions defined on interval are considered.
It has been proved that both measurability in the sense of Lebesgue and Baire implies
the continuity of such functions. In the paper (O2) it is shown that every t-Wright con-
vex function, continuous at least at one point of an open and convex subset of a real
linear-topological space is continuous at every point. This result is a generalization of
Kominek’s Theorem proved in [61] for functions defined on interval. The main result of
the paper (O2) states that any t-Wright convex function which restriction to the "large
set" in the sense of measure or category, is lower semicontinuous, is continuous and convex.

The paper (O4) consists of two parts. In the first part we discuss a connection
between the local boundedness of t-Wright convex functions and continuity. It is known
that one side local boundedness from above or below (even global) does not imply the
continuity of these functions. The question about the suitable version of Bernstein and
Doetsch Theorem for bounded function (from above and below) is natural. The following
theorem is the main result of the first part of this paper.

Theorem 37 ((O4), Theorem 5) Let D be an open and convex subset of a real linear-
topological space, and let f : D → IR be a t-Wright convex function. If f is locally bounded
at some point then it is continuous.

The above theorem motivates to study the following class of sets:

Ct(D) := {T ⊆ D | every t-Wright convex function f : D → IR
bounded on T, is continuous}

In the paper it is shown that some sets that are "smaller" than the set with nonempty
interior (in the measure and category sense) belong to the class Ct(D). An analogous class
of sets for convex functions in the sense of Jensen was introduced by Ger and Kuczma in
the paper [42]. Many facts about this concept can be found in the monograph [71].

In the second part of the paper we proved that also Christensen measurability implies
convexity and continuity of t-Wright convex functions. An analogous result for convex
functions in the sense of Jensen (t = 1

2
) was done by P. Fischer and Z. Słodkowski in [34].

Joint paper with Michał Lewicki (O5) concerns non-symmetric t-convex functions.
The definition of these functions was proposed by Páles who modified the definition of
t-convex functions in the following manner:

Definition 6 Let t ∈ (0, 1) be a given number. A function f : I → IR is said to be a
non-symmetric t-convex (where I ⊆ IR is an interval) if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for such x, y ∈ I, that x < y.

Since every t-convex function is convex in the sense of Jensen, the natural question is
whether this property have also non-symmetric t-convex functions. This problem was
posed by Páles orally, during the conferences of ISFE series. In the discussed paper we
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showed that every non-symmetric t-affine function i.e. a solution to the corresponding
functional equation is a t-affine function, i.e. it satisfies this equation for all x, y ∈ I. In
particular, it satisfies this functional equation for t = 1

2
.

On the other hand we gave a negative solution to the Páles problem by constructing
two examples. The first is an example of a non-symmetric t-convex function which is
non-symmetric t-concave, the second is an example of a non-symmetric t-convex function
which is concave in the sense of Jensen. These examples show also, that non-symmetric
t-convex functions do not have non-symmetric t-affine support functions at an arbitrary
point.

In the paper (O6) convex functions in the sense of Wright are studied. Several
characterizations of these functions are given. It turns out that these functions can be
described in term of the second symmetric difference. I have shown that the convexity in
the sense of Wright of function f : D → IR is equivalent to the convexity of function

[0, 1] 3 t −→ f(tx+ (1− t)y) + f((1− t)x+ ty),

for all x, y ∈ D and the function

Dy 3 x −→ f(x) + f(2y − x),

for all y ∈ D, where Dy = D∩(2y−D), and D is a convex set. Using the above character-
ization I obtained, without any additional assumptions, suitable versions of the Hermite-
Hadamard inequalities. In the literature there are known some results concerning the
Hermite-Hadamard inequalities for Wright-convex functions, unfortunately, the authors
of all these articles assume that the considered Wright-convex functions are measurable,
so in particular, continuous and convex, and this leads to the classical Hermite-Hadamard
inequalities.

The paper (O7) concerns to the so-called delta (s, t)-convex maps. I give in it a
common generalization of delta-convex maps introduced by Veselý and Zajiček in [120]
and (s, t)-convex functions introduced by Kuhn in the paper [70]. Assume that s, t ∈ (0, 1)
are given numbers and let X, Y be a real Banach spaces.

Definition 7 Let D ⊆ X be a convex set. A map F : D → Y is said to be a delta
(s, t)-convex with a control function f : D → IR, if for all x, y ∈ D the inequality

‖tF (x) + (1− t)F (y)−F (sx+ (1− s)y)‖
≤ tf(x) + (1− t)f(y)− f(sx+ (1− s)y),

holds. In the case, where s = t, we say that F is a delta t-convex with a control function
f ; if t = 1

2
, then F is called delta convex in the sense of Jensen with a control function f .

I have shown, using Daróczy and Páles identity [29] that every delta (s, t)-convex
map has to be delta convex in the sense of Jensen. In particular, any delta t-convex map
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is a delta convex in the sense of Jensen, and from this fact we can infer that in the class of
continuous functions the concepts of delta-convexity and delta t-convexity are equivalent.
In the case, where t = 1

2
this theorem was proved by Veselý and Zajiček in [120]. The

main result of (O7) is the following support theorem for delta (s, t)-convex maps:

Theorem 38 ((O7), Theorem 4) Let D ⊆ X be an open and convex set, and let
F : D → Y be a delta (s, t)-convex map with a control function f : D → IR. Then for an
arbitrary point y ∈ D there exist: (s, t)-affine maps Ay : D → Y and ay : D → IR such
that

‖F (x)− Ay(x)‖ ≤ f(x)− ay(x) for x ∈ D
and

Ay(y) = F (y), ay(y) = f(y).

It turns out that the existence of an (s, t)-affine support function at an arbitrary
point characterizes (s, t)-convex maps.

The paper (O8) was devoted to delta Schur convex maps. I generalize the definition of
preorder on the Cartesian product of arbitrary real linear spaces and introduce a common
generalization of delta-convex maps and Schur convex functions.

Definition 8 Let X be a real linear space. We say that a vector x = (x1, ..., xn) ∈ Xn

is majorized by vector y = (y1, ..., yn) ∈ Xn, written x ≺ y, if there exists a doubly
stochastic matrix S ∈ IRn

n such that

(x1, ..., xn) = (y1, ..., yn)S.

A common generalization of the concepts of convex functions in the sense of Schur
and delta-convex mappings gives the following definition:

Definition 9 Let X and Y be real normed spaces, and let D ⊆ X be a convex set. We
say that a map F : Dn → Y is delta convex in the sense of Schur with a control function
f : Dn → IR if for all x, y ∈ Dn we have

x ≺ y =⇒ ‖F (x)− F (y)‖ ≤ f(y)− f(x).

It is easy to check that in the case, where Y = IR a given map is a delta convex in the
sense of Schur if and only if it is a difference of two convex function in the sense of Schur.
In this case a delta convex functions in the sense of Schur form the smallest linear subspace
containing the cone of all convex functions in the sense of Schur. Therefore this concept
is a natural generalization to the case of mappings taking the vector values of functions
which are the difference of two convex functions in the sense of Schur. The purpose
of the paper was to generalize the result of Ng [81] i.e. providing a characterization of
delta convex maps in the sense of Schur of the form H(x1, ..., xn) =

∑n
j=1 F (xj). Using a

support theorem [(O7), Theorem 1] I prove the following counterpart of the Ng’s theorem
(see Theorem 1, p. 4)
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Theorem 39 ((O8), Theorem 5) Let X and Y be two real Banach spaces, and let
D ⊆ X be an open and convex set. Let F : D → Y, f : D → IR and put G(x1, . . . , xn) =∑n

j=1 F (xj), g(x1, . . . , xn) =
∑n

j=1 f(xj). Then the following conditions are pairwise
equivalent:

(i) G is delta convex in the sense of Schur with a control function g, for some n ≥ 2;

(ii) G is delta convex in the sense of Schur with a control function g, for every n ≥ 2;

(iii) F is delta convex in the sense of Wright with a control function f i.e.

‖F (x) + F (y)− F (tx +(1− t)y)− F ((1− t)x+ ty)‖
≤ f(x) + f(y)− f(tx+ (1− t)y)− f((1− t)x+ ty)

for all x, y ∈ D, t ∈ [0, 1];

(iv) F has the form
F (x) = W (x) + A(x), x ∈ D,

where W : D → Y is a delta-convex map, and A : X → Y is an additive map.

The last theorem of the paper generalizes the Ng’s theorem on maps taking values
in vector spaces for more general sum of the form

∑n
j=1 Fj(xj):

Theorem 40 ((O8), Theorem 6) Let X and Y be two real Banach spaces, and let
D ⊆ X be an open and convex set. If Fj : D → Y and fj : D → IR for j = 1, ..., n, then
the map G(x1, . . . , xn) =

∑n
j=1 Fj(xj) is delta convex in the sense of Schur with a control

function g(x1, . . . , xn) =
∑n

j=1 fj(xj) if and only if there exist constants C1, ..., Cn ∈ Y ,
additive map A : X → Y and delta-convex map W : D → Y such that

Fj(x) = A(x) +W (x) + Cj for j = 1, ..., n and x ∈ D.

The papers (O9), (O10) relate to h-convex functions. The definition of these functions
was introduced by S. Varos̆anec in [118] in the following way:

Definition 10 Let D be a convex subset of a real linear space, h : [0, 1]→ IR. A function
f : D → IR is said to be h-convex, if

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) for x, y ∈ D, t ∈ [0, 1].

The concept of h-convex functions generalizes a concept of convex functions (h(t) = t),
s-convex in the sense of Breckner (h(t) = st) [21], so-called Godunova-Levin functions
(h(t) = 1

t
, for t ∈ (0, 1)) [43] and P -functions (h(t) = 1) [94].

In the paper (O9) I give the necessary and sufficient conditions under which two func-
tions can be separated by h-convex function, for multiplicative function h. This theorem
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generalizes on infinite dimensional spaces the Baron-Matkowski-Nikodem theorem which
gives the necessary and sufficient conditions for the separation by a convex functional.

In the paper (O10) I study h convex functions satisfying the condition

(5) h(t) + h(1− t) = 1 for t ∈ [0, 1].

If the above condition holds then an h-convex function may take arbitrary values, other-
wise it is either non-negative or non-positive. The main result of the paper (O10) is the
following characterization of h-convex functions satisfying the condition (5):

Theorem 41 (O10), Theorem 5) Let D be an algebraically open and convex subset of
a real linear space and let h : [0, 1] → IR satisfy the condition (5). Then f : D → IR is
an h-convex function if and only if f is a constant function or h(t) = t, t ∈ [0, 1]. In
particular, f is convex function.

Joint paper with Tomasz Szostok (O11) was devoted to the new method of proving
of inequalities using the Levin-Stečkin theorem [73], which provides the necessary and
sufficient conditions under which for any continuous and convex function f : [a, b] → IR
the inequality ∫ b

a

f(x)dF1(x) ≤
∫ b

a

f(x)dF2(x),

holds, where F1, F2 : [a, b]→ IR are functions of bounded variation. Many classic inequal-
ities fulfilled by the convex functions can be easily obtained by specifying the functions F1

and F2 in the Levin-Stečkin theorem. In particular, the Hermite-Hadamard inequalities
which can be rewritten in the form

f
(x+ y

2

)
≤ F (y)− F (x)

y − x
≤ f(x) + f(y)

2
,

where F ′ = f . In the paper we obtain more general inequalities, replacing the middle
term F (y)−F (x)

y−x by expressions of numerical differentiation of the form∑n
i=1 aiF (αix+ (1− αi)y)

y − x
,

where
∑n

i=1 ai = 0.

Joint paper with Włodzimierz Fechner (O12) concerns the characterizations of ring
homomorphism through the system of functional inequalities. The first result of this
type was done by M. Rǎdulescu in [98]. Let X be a compact Hausdorff topological
space, and let C(X) be the space of all continuous real valued functions defined on X
and equipped with the supremum norm. Rǎdulescu in the paper [98] showed that if an
operator T : C(X)→ C(X) satisfies the system of inequalities

(6)

{
T (f + g) ≥ T (f) + T (g)
T (f · g) ≥ T (f) · T (g)
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for all f, g ∈ C(X), then there exists a clopen subset B ⊆ X and a continuous function
φ : X → X such that

T (f) = χB · f ◦ φ,

where χB denotes the characteristic function of the set B. In particular, T is linear, mul-
tiplicative, and continuous. Ercan in the paper [31] has shown that the assumption that
X is a compact Hausdorff space may be dropped. The system (6) has been extensively
studied by the following authors: J. X. Chen, Z. L. Chen [25], J. Dhombres [30], W.
Fechner [32, 33], I. Gusić [44] anf Volkmann [123, 124].

In this paper we considered more general system of inequalities for operators defined
on rings and taking values in ordered rings. We showed, that under some technical
assumptions on rings, operators U, T : P → R, satisfy the system{

T (f + g) ≥ T (f) + T (g)
U(f · g) ≥ U(f) · U(g)

and the inequality U ≤ T for all f, g ∈ P if and only if U = T is a ring homomorphism.
The next result of this type states that if additionally 1 ∈ P , then operators T, U :

P → R satisfy the system: {
T (f + g) ≥ U(f) + T (g)
U(f · g) ≥ T (f) · T (g)

for all f, g ∈ P if and only if U = T is a ring homomorphism.

As an application of theorems of these type we give a sufficient condition for the
separation of two operators T, U : B(X) → B(X) (where B(X) denotes the space of all
bounded real valued functions defined on X) by an operator which is additive and mul-
tiplicative simultaneously.

The purpose of the paper (O13) was to prove a counterpart of the Hermite-Hadamard
inequalities for convex functions in the sense of Jensen. However, these functions can be
irregular (e.g. a discontinuous at every point, nonmeasurable in particular, non-integrable)
it was necessary to generalize the concept of Riemann integral on wider class of maps.

For a subfield IK ⊆ IR let us define a generalized interval in the following way

[a, b]K := {αa+ (1− α)b : α ∈ [0, 1] ∩K}.

Next, for a given function f : [a, b]K → IR we define lower and upper Darboux sums, lower
and upper integral as for classic Riemann integral restricted to the set [a, b]K. If the lower
and upper integrals are equal we say that f is K-Riemann integrable and this common
value we denote by the symbol ∫ b

a

f(x)dKx.
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Clearly, if K1 ⊆ K2, then every K2-Riemann integrable function is also K1-Riemann
integrable but the converse is not true. In particular, every Riemann integrable function
in the classical sense is IK-Riemann integrable for any IK ⊆ IR and these integrals are equal.
This concept indeed generalizes Riemann integral. In the paper I have proved number
of properties of IK-Riemann integral, I discuss the connection with the IK-derivative,
introduced by Z. Boros and Páles in [20] and give the classes of functions integrable in
generalized sense. It turns out that any IK-convex function f : I → IR, i.e.

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for x, y ∈ I, and α ∈ [0, 1] ∩K,

is a IK-Riemann integrable on an arbitrary interval [a, b]K ⊆ I. Especially, any IK-linear
function g : IR→ IR i.e. additive and IK-homogeneous has this property, moreover,∫ b

a

g(x)dKx = g
(a+ b

2

)
(b− a).

The main result of the paper states that if f : I → IR is a convex function in the
sense of Jensen then for all a, b ∈ I, a < b,, f is a IQ-Riemann integrable on the set [a, b]IQ,
moreover,

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dIQx ≤
f(a) + f(b)

2
.

The concept of a generalized Riemann integral turned out to be a very useful tool. I
also used them in the paper (O14). In this paper I gave a solution to the problem posed
by Tomasz Szostok [112], who asked about the solutions f, F : (a, b)→ IR to the system
of inequalities

(7) f
(x+ y

2

)
≤ F (y)− F (x)

y − x
≤ f(x) + f(y)

2
for x, y ∈ (a, b), x 6= y.

The following theorem provides a solution to the problem of Szostok:

Theorem 42 ((O14), Theorem 1) The functions F, f : (a, b) → IR satisfy the system
of inequalities (7) if and only if f is a convex function, and F is a primitive function of
f , i.e. F ′ = f .

The above result can be understood as a regularity phenomenon. The solutions
to the system of functional inequalities turn out to be regular without any regularity
assumptions. In the literature there are known several results of these type for functional
equations but this phenomenon is very rare for the solutions to the functional inequalities.
As we known, the inequality defining the convexity, for functions defined on an open and
convex subset of a finite-dimensional real linear space has only continuous solutions. The
same effect were obtained by the authors in mentioned papers [31], [98] for a system
of functional inequalities characterizing the ring homomorphisms. A characterization of
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functions satisfying the so-called Shannon inequality were obtained by J. Aczél and A.
M. Ostrowski in the paper [4] (see also [3], p. 116). They have shown that the function
h : [0, 1]→ IR satisfies the functional inequality

n∑
k=1

pkh(pk) ≤
n∑
k=1

pkh(qk),

for all such p1, . . . , pn; q1, . . . , qn ∈ (0, 1) that
∑n

k=1 pk =
∑n

k=1 qk = 1 if and only if there
exist constants b, c ∈ IR, c ≤ 0 such that

h(p) = c log p+ b for p ∈ (0, 1).

For functional equations the regularity phenomenon is characteristic for equations derived
from the mean values theorems. In 1985 Aczél proved that the functions f, F : IR → IR
satisfy the functional equation

F (y)− F (x) = (y − x)f
(x+ y

2

)
if and only if F (x) = cx2 and f(x) = 2cx. Results in this spirit can be found in the papers
[47], [54], [59], [60], [100], [108] and in monograph [99].
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