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[H2] Sz. Żeberski, On completely nonmeasurable unions, Mathematical Logic Quar-
terly, 53 (1) (2007), 38-42,
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The discussion of the results of the above-mentioned publications

History of the theme and motivation of research

We will use standard set-theoretic notation and terminology.
For fixed uncountable Polish space T byM we will denote a σ-ideal of meager subsets of

T . If there is a measure given in T then by N we will denote a σ-ideal of null sets.
One of the first results concerning nonmeasurable unions of subsets of the real line is the

following result of Kuratowski from [Ku].

Theorem 1 (Kuratowski). Assume CH. For every family A ⊆ M of pairwise disjoint
meager sets such that

⋃
A /∈M there exists a subfamily A′ ⊆ A with a union

⋃
A′ without

Baire property.

The conclusion of the above theorem remains true in ZFC. It was proved by L. Bukovsky
in [Bu].

Theorem 2 (Bukovsky). (1) For every partition A ⊆ M of the real line into meager
sets, there exists a subfamily A′ ⊆ A with a union

⋃
A′ without Baire property.

(2) For every partition A ⊆ N of the real line into null sets, there exists a subfamily
A′ ⊆ A with Lebesgue nonmeasurable union

⋃
A′.

Unlike the proof of Kuratowski’s theorem, the proof given by Bukovsky uses a nonelemen-
tary method of generic ultrapower applied to the Cohen forcing in the case of category and
applied to the Solovay forcing in the case of measure.

A generalization of the result obtained by Bukovsky was given by J. Brzuchowski, J.
Cichoń, E. Grzegorek and Cz. Ryll-Nardzewski in [BCGR].

Let us recall that if I ⊆ P (T ) is a σ-ideal, then A is called a base of I if A ⊆ I and
(∀I ∈ I)(∃A ∈ A)(I ⊆ I). We say that I has Borel base if there exists a base of I consisting
of Borel sets. We define analytic, co-analytic and BP-base analogously. In the latter case
we require that there exists a base consisting of sets with Baire property.

Theorem 3 (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski). If I is a σ-ideal on a
Polish space T with Borel base, containing singletons, then for every point-finite family
A ⊆ I (i.e. such that such that ∀x ∈ T {A ∈ A : x ∈ A} is finite) such that

⋃
A /∈ I

there exists a subfamily A′ ⊆ A which is not I-measurable i.e. does not belong to the σ-field
generated by σ-ideal I and σ-field of all Borel subsets Bor(T ).

The proof of the above theorem is elementary: it uses elements of classical descriptive set
theory.

This theorem cannot be extended to families A ⊆ N which are point-countable i.e. such
that

(∀x ∈ T ) ({A ∈ A : x ∈ A} is countable).

This was proved by D. Fremlin in [Fr]. He considered the model obtained from a model
of GCH by adding ω2 independent Cohen reals. He constructed there a point-countable
cover A ⊆ N of reals by null sets such that for every subfamily A′ ⊆ A its union

⋃
A′ is

measurable in the sense of Lebesgue. A similar result remains true in the case of meager
sets. In this case it is enough to consider a model obtained from the model of GCH by
adding ω2 independent Solovay reals.

Definition 1. Let I be a σ-ideal of subsets of an uncountable Polish space T . Assume that
I has Borel base. A set A ⊆ T is called
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(1) I-measurable, if A belongs to the σ-field generated by Bor(T ) Borel subsets of T and
the σ-ideal I,

(2) I-nonmeasurable, if A is not I-measurable,
(3) completely I-nonmeasurable, if for every Borel set B /∈ I the intersection A ∩ B is
I-nonmeasurable.

If I is the σ-ideal of countable sets, A is I-nonmeasurable if and only if A is not a Borel
set, and A is completely I-nonmeasurable if and only if A is a Bernstein set.

If I = N is the σ-ideal of Lebesgue null subsets of the space T = [0, 1], a set A is completely
I-nonmeasurable if and only if its inner measure is equal to 0 and its outer measure is equal
to 1.

One of the directions of research on nonmeasurable unions is verifying the following hy-
pothesis:

Hypothesis 1. Let I be a σ-ideal of subsets of an uncountable Polish space T . Assume that
I has Borel base. Let A be a point-finite cover of T by subsets from I. Then there exists a
subfamily A′ ⊆ A with completely I-nonmeasurable union

⋃
A′.

In the case I = N it is still an open question whether for every partition of the unit
interval [0, 1] into null set there exists a subfamily whose union has inner measure 0 and
outer measure 1. Partial result were obtained by D. Fremlin and S. Todorcević in [FT].

Theorem 4 (Fremlin, Todorcević). For every partition P of the unit interval [0, 1] into null
sets and for every ε > 0 we can find a subfamily A ⊆ P whose union

⋃
A has inner measure

smaller than ε and outer measure greater than 1− ε.

The following result of M. Gitik and S. Shelah from [GS2] provides the inspiration for
further potential generalizations.

Theorem 5 (Gitik, Shelah). Let (An)n∈ω be a sequence of subsets of the real line R. Then
there exists a sequence (Bn)n∈ω satisfying the following conditions

(1) Bn ⊆ An, for each n,
(2) if n 6= m then Bn ∩Bm = ∅,
(3) λ∗(An) = λ∗(Bn), for every n,

where λ∗ denotes the outer Lebesgue measure.

Proof of the above result uses the method of generic ultrapower. It is based on showing
that the Boolean algebra of the form P (κ)/I cannot be isomorphic to Cohen×Random (or
Random× Cohen).

Let us notice that Theorem 5 is a natural generalization of the classical result of Luzin
that every subset A of reals can be partitioned into two subsets of the same outer measure
as the outer measure of A.

In [CK] J. Cichoń and A. Kharazishvili showed a series of applications of theorems about
the existence of a subfamily with nonmeasurable union.

Let X be any topological space. A function f : T → X is called Bor[I]-measurable, if for
every open set U the preimage f−1[U ] belongs to the σ-field generated by Borel subsets of
T and the σ-ideal I.

Theorem 6 (Cichoń, Kharazishvili). Let E be a metric space and f : T → E be a Bor[I]-
measurable function. Then there exists a set A ∈ I such that f [T \ A] is a separable space.
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A natural corollary of the above theorem (for I = {∅}) is the classical Frolik theorem.

Theorem 7 (Frolik). Let E be a metric space and f : T → E be a Borel function. Then
rng(f) is a separable space.

Theorem 8 (Cichoń, Kharazishvili). Let E be a metric group and f, g : T → E be a
Bor[I]-measurable functions. Then f + g is a Bor[I]-measurable function.

A particular case of unions of sets are algebraic sums defined for an abelian group (G,+).
Let A,B ∈ P (G) be any subsets of given group. An algebraic sum A + B is defined by the
following formula:

A+B = {a+ b ∈ G : (a, b) ∈ A×B}.
W. Sierpiński in [Si1] proved that there exist subsets X, Y of the real line R such that

the algebraic sum X + Y is not Lebesgue measurable.
A result of Sierpiński was strengthened by M. Kysiak in [Ky]. He showed the following

result.

Theorem 9 (Kysiak). Assume that a σ-ideal I of subsets of reals contains all singletons
and a pair (I,A) has perfect set property. (A pair (I,A) has perfect set property if every set
B ∈ A\I contains nonempty perfect set.) Then for every subset A ⊆ R such that A+A /∈ I
there exists X ⊆ A such that X +X /∈ A.

(N ,LM) and (M,BP) are examples of pairs possessing perfect set property (here LM
denotes the σ-algebra of all Lebesgue measurable sets, BP denotes the family of all subsets
of R that have the Baire property). As a corollary we obtain the theorem of Ciesielski, Fejzic,
Freiling from [CFF] saying that if A ⊆ R and A + A has positive outer measure then there
exists a set X ⊆ A such that X + X is Lebesgue nonmeasurable. The perfect set property
of the pair (M,BP) implies the analogous theorem for the σ-ideal of meager sets M. In
[CFF] authors proved also the following result: if A ⊆ R is such that A+A /∈ N then there
exists a null subset X ⊆ A such that X +X is nonmeasurable. The analogous result is true
in the case of category.

In the research concerning families of subsets of Polish space, in particular in the research
concerning σ-ideals, an important role is played by cardinal coefficients. For a given family
F ⊆ P (X) of subsets of a given Polish space T we define the cardinal coefficients in the
following way:

add(F) = min{|A| : A ⊆ F ∧
⋃
A /∈ F},

non(F) = min{|A| : A ⊆ X ∧ A /∈ F},
cov(F) = min{|A| : A ⊆ F ∧

⋃
A = T},

covh(F) = min{|A| : A ⊆ F ∧ (∃B ∈ Bor(T ) \ F) B ⊆
⋃
A},

cof(F) = min{|A| : A ⊆ F ∧ (∀B ∈ F)(∃A ∈ A) B ⊆ A}.

Moreover the bounding number and the dominating number

b = min{|B| : B ⊆ ωω ∧ (∀x ∈ ωω)(∃y ∈ B) ¬(y ≤∗ x)}

d = min{|D| : D ⊆ ωω ∧ (∀x ∈ ωω)(∃y ∈ D) x ≤∗ y}
(where f ≤∗ g denotes that (∃m ∈ ω)(∀n ≥ m)f(n) ≤ g(n)) are also connected to cardinal
coefficients for the σ-ideal of meager sets and this connection is described in so called Cichoń’s
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diagram (see e.g. [BJS]).

cov(N ) // non(M) // cof(M) // cof(N ) // c
OO

b

OO

// d

OO

ω1
// add(N )

OO

// add(M)

OO

// cov(M)

OO

// non(N )

OO

Luzin sets and Sierpiński sets also occur in the research concerning nonmeasurable sets.
They were defined and studied in [Lu], [Si2].

Definition 2. A set A ⊆ T is called

(1) a Luzin set, if A is uncountable and the intersection A ∩M is countable for every
meager set M ∈M,

(2) a Sierpiński set, if A is uncountable and the intersection A∩N is countable for every
null set N ∈ N .

The existence of a Luzin set (a Sierpiński set) is independent of ZFC theory. Under CH,
above mentioned sets exist, but under MA+ ¬CH they do not exist.

In [Sch] M. Scheepers gave a characterization of Luzin’s set in terms of covering properties
(similar to the Rothberger property).

The notion of Luzin set can be naturally generalized replacing the ideal of meager setsM
by any other ideal of subsets of space T .

In [BH] T. Bartoszyński and L. Halbeisen consider K-Luzin sets, where K is a σ-ideal
generated by compact subsets of the Baire space ωω. Authors show that existence of a
K-Luzin set of cardinality c is equivalent to Banach-Kuratowski theorem about matrix of
subsets of [0, 1].

Generalized Luzin sets were also considered. Let us recall that A ⊆ T is a generalized
Luzin set, if for every meager set M ∈ M we have |M ∩ A| < |A|. Generalized Luzin sets
were studied e.g. by Bukovsky in [Buk]. Also in that case, the ideal of meager sets M can
be replaced by another ideal I. In that way we obtain the so called generalized I-Luzin sets.

The discussion of the results

Unions of sets. We will present results that are partial solutions of the following problem:
does every point-finite family of sets from a σ-ideal I contain a subfamily with completely
I-nonmeasurable union? We will focus on σ-ideals I possessing Suslin property (known
also as c.c.c. ideals), i.e. such σ-ideals I that every family of pairwise disjoint Borel sets
outside I is countable. Examples of such σ-ideals are N and M. Each σ-ideal with Suslin
property has also hull property i.e. for every subset X of a space T there exists the smallest
(modulo a set from ideal I) I-measurable set containing X (modulo a set from ideal I). By
[X]I we denote the member of Boolean algebra B[I]/I representing a class of all minimal
I-measurable subsets of T containing X modulo a set from I.

We will assume additionally that some large cardinals smaller than continuum do not
exist.

Let us recall the definition given by D. Fremlin (see [Fre]).
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Definition 3. An uncountable regular cardinal number κ is called quasi-measurable if there
exists a σ-ideal J ⊆ P (κ) such that the Boolen algebra P (κ)/J satisfies c.c.c., i.e. every
collection of pairwise disjoint elements of this algebra is countable.

Let us notice that if κ is a measurable cardinal or a real-valued measurable cardinal, then
κ is quasi-measurable. On the other hand, the Ulam matrix guaranties that every quasi-
measurable cardinal is weakly inaccessible. The quasi-measurable cardinals are so called
large cardinals.

Let us give a natural generalization of the notion of complete I-nonmeasurability which
additionally depends on a given subset X of a space T .

Definition 4. Let T be an uncountable Polish space, I – a σ-ideal of subsets of T having
Borel base. Fix X /∈ I. We say that A ⊆ X is completely I-nonmeasurable in X if

(∀B ∈ Bor \ I)(B ∩X /∈ I ⇒ (A ∩B /∈ I) ∧ (A ∩ (X \B) /∈ I)).

Theorem 10 ([H2], Theorem 3.6). Assume that there is no quasi-measurable cardinal κ ≤ c.
Let T be an uncountable Polish space, I – a σ-ideal of subsets of T possessing Borel base
and having Suslin property. Then for every point-finite family A ⊆ I with union outside I
we can find a subfamily A′ such that

⋃
A′ is completely I-nonmeasurable in

⋃
A.

The proof of the latter theorem is based on the following three lemmas (the assumptions
in these lemmas are the same as in Theorem 10).

Lemma 1 ([H2], Theorem 3.3). Let {Aξ : ξ ∈ ω1} be any family of subsets of T. Then there
exists a family {Iα : α ∈ ω1} of pairwise disjoint subsets of ω1 such that for every α, β ∈ ω1

we have
[⋃

ξ∈Iα Aξ

]
I

=
[⋃

ξ∈Iβ Aξ

]
I
.

Lemma 2 ([H2], Lemma 3.4). There exist families Aα ⊆ A for α ∈ ω1 satisfying the
following conditions

(1)
⋃
Aα /∈ I,

(2) α 6= β implies Aα ∩ Aβ = ∅,
(3) [

⋃
Aα]I = [

⋃
Aβ]I.

Lemma 3 ([H2], Lemma 3.5). Let C be any point-finite family of subsets of space T . Then
there exists a subfamily C ′ ⊆ C such that a set C \ C ′ is countable and

(∀B ∈ B \ I)(∀C ∈ C ′)(B ∩
⋃
C /∈ I ⇒ ¬(B ∩

⋃
C ⊆ B ∩ C)).

Theorem 10 was strengthened in [H5] (written jointly with R. Ra lowski).

Theorem 11 ([H5], Theorem 1.3). Assume that there is no quasi-measurable cardinal κ < c.
Let T be an uncountable Polish space, I – a σ-ideal of subsets of T possessing Borel base
and having Suslin property. Then for every point-finite cover A ⊆ I of the space T we can
find a subfamily A′ such that

⋃
A′ is completely I-nonmeasurable.

The proof of this theorem uses Lemmas 1, 2, 3 and two more additional theorems.

Theorem 12 ([H5], Theorem 2.1). Assume that A ⊆ I is a cover of a Polish space T such
that for every set D ⊆ T of cardinality smaller than c a union

⋃
x∈D

⋃
A(x) does not contain

any Borel set outside I. (A set A(x) denotes the collection of all elements of a family A
which contain x, i.e. A(x) = {A ∈ A : x ∈ A}.) Then A contains pairwise disjoint families
Aξ for ξ < c such that

⋃
Aξ is a completely I-nonmeasurable set.
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Theorem 13 ([H5], Theorem 2.2). Assume that there is no quasi-measurable cardinal κ < c.
Let A ⊆ I be a family such that for every x the set A(x) has cardinality smaller than c. If⋃
A /∈ I then we can find an uncountable collection of subfamilies Aα ⊆ A, α ∈ ω1 such

that
⋃
Aα /∈ I and

⋃
Aα ∩

⋃
Aβ ∈ I for α 6= β.

Let us now concern generalizations of Theorem 5 about inscribing nonmeasurable sets into
given sets (families of sets).

Theorem 14 ([H6], Theorem 3.2). Let A be a family of pairwise disjoint subsets of space T
consisting of first category sets. Assume that

⋃
A /∈ M. For n ∈ ω let us fix any An ⊆ A.

Then there exists B ⊆ A satisfying the following conditions:

(1)
⋃
B /∈M,

(2) for every n ∈ ω
⋃
B∩

⋃
An does not contain anyM-positive Borel set modulo

⋃
An,

i.e.

(∀n)(¬∃U)(U is open ∧ U ∩
⋃
An /∈M∧ U ∩

⋃
An \

⋃
B ∈M).

The proof of this theorem consists in obtaining a contradiction with the existence of a
family that does not fulfil the conclusion of the theorem. Namely, using such family we
construct a Boolean algebra of the form P (κ)/I. Then we show that this algebra is atomless
and contains a countable dense subset. It means that it is the only (up to isomorphism) such
algebra, i.e. Cohen algebra. By the result of Gitik and Shelah (see [GS1]) it is impossible.

Theorem 15 ([H6], Theorem 3.6). Let A ⊆ M be a family of pairwise disjoint subsets of
space T . Assume that

⋃
A /∈M. For n ∈ ω let us fix any An ⊆ A. Then there exists B ⊆ A

satisfying the following conditions:

(1) [
⋃
B]M = [

⋃
A]M,

(2) for every n ∈ ω a set
⋃
B ∩

⋃
An does not contain any M-positive Borel set modulo⋃

An.

The proof of the latter theorem uses Theorem 14. In the first step we divide the space
⋃
A

into two pieces. The first one contains fragments on which Boolean algebras fulfils Suslin
property. The second subspace does not have this property hereditarily. First, we make
a construction in the second subspace. We use Erdős-Alaoglu theorem, or, more precisely,
its version following from the proof from Taylor’s paper [Ta]. Then we deal with “c.c.c.
subspace” and use Theorem 14 to build a family by transfinite induction. Suslin property
ensures that the construction stops at step < ω1.

The next theorem is a variant of Theorem 5 from [GS2] and, at the same time, a gen-
eralization of Theorem 52 from [P3] about the existence of a subfamily with completely
M-nonmeasurable union in a given partition into meager sets.

Theorem 16 ([H6] Theorem 3.7). Assume that A ⊆M is a partition of a Polish space T .
Let An ⊆ A for n ∈ ω. Then there exists Bn ⊆ An such that

(1) Bn ∩ Bm = ∅ for n 6= m,
(2) Bn ⊆ An,
(3) [

⋃
An]M = [

⋃
Bn]M.

Now, let us focus on inscribing subfamilies in the case of any σ-ideal with Suslin property.
Let us start with the following lemma.
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Theorem 17 ([H6], Lemma 4.3). Assume that there is no quasi-measurable cardinal smaller
than continuum. Let A ⊆ I be a point-finite family. Let (An : n ∈ ω) be a sequence of
subsets of A. Then we can find a sequence (Bn : n ∈ ω) fulfilling the following conditions:

(1) Bn ∩ Bm = ∅ for n 6= m,
(2) Bn ⊆ An,
(3) [

⋃
An]I = [

⋃
Bn]I.

The latter theorem can be seen as a generalization of Theorem 10. The methods used in
the proofs of both theorems are also similar.

We can strengthen the conclusion of the latter theorem inscribing uncountably many
families into each family An. More precisely, we have the following result.

Theorem 18 ([H6], Theorem 4.4). Assume that there is no quasi-measurable cardinal smaller
than continuum. Let A ⊆ I be a point-finite family. Let (An : n ∈ ω) be a sequence of
subsets of A. Then we can find a sequence (Bξn : n ∈ ω, ξ ∈ ω1) fulfilling the following
conditions:

(1) Bξn ∩ Bηm = ∅ for (n, ξ) 6= (m, η),
(2) Bξn ⊆ An,
(3) [

⋃
An]I = [

⋃
Bξn]I.

Let us now present results concerning nonmeasurable unions of families with some addi-
tional properties.

Let us start with the following definitions.

Definition 5. Let A be an algebra of subsets of X. Let F : X → Y be a multifunction, i.e.
F ⊆ X × Y . We say that a multifunction F is A-measurable if for every open subset U of
the space Y the set

F−1[U ] = {x ∈ X : Fx ∩ U 6= ∅}
belongs to the family A.

Definition 6. Let P be a partition of a set X.

(1) A saturation of a set A ⊆ X is a set A∗ =
⋃
{E ∈ P : E ∩ A 6= ∅}.

(2) A partition P is called Borel measurable if a saturation of any open set is Borel.
(3) A partition P is called strongly Borel measurable if a saturation of any closed set is

Borel.

Let us notice that for second countable spaces strong Borel measurability implies Borel
measurability of a partition.

Theorem 19 ([H3], Theorem 2.1). Assume that any Borel set outside I contains a closed
set outside I. Let A be a strongly Borel measurable partition of a space T into closed subsets
from I. Then there is a subfamily A0 ⊆ A such that

⋃
A0 is completely I-nonmeasurable.

As a corollary we obtain the following result.

Corollary 1 ([H3], Corollary 3.2). Let G be an abelian compact Polish group. Suppose that
σ-ideal I is closed under translations. Assume that each Borel set outside I contains a closed
set outside I. Let H < G be a perfect subgroup and H ∈ I. Then there exists T ⊆ G such
that T +H is completely I–nonmeasurable in G.
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Theorem 20 ([H3], Theorem 2.2). Let f : X → Y be a Borel measurable function such
that f−1(y) ∈ I for every y ∈ Y . Then there is T ⊆ Y such that f−1[T ] is completely
I-nonmeasurable.

Theorem 21 ([H3], Theorem 2.3). Assume that a σ-ideal I has Suslin property. Let F :
X → Y be Borel measurable multifunction such that F (x) is finite for every x ∈ X. Then
there exists T ⊆ Y such that F−1[T ] is completely I-nonmeasurable.

The proof of this theorem uses Kuratowski–Ryll-Nardzewski selection theorem from [KR].

Theorem 22 ([H3], Theorem 2.4). Assume that a σ-ideal I has Suslin property. Let F ⊆
X × Y be an analytic set satisfying the following conditions:

(1) (∀y ∈ Y )(F y ∈ I),
(2) X \ π[F ] ∈ I, where π : X × Y → X is a projection on the first coordinate,
(3) (∀x ∈ X)(|Fx| < ω).

Then there exists a set T ⊆ Y such that F−1[T ] is completely I-nonmeasurable.

Applications. In this subsection T denotes uncountable Polish space.

Definition 7. Let X be a topological space. We say that a function f : T → X is weakly
Baire measurable if for every U, V open disjoint subsets of X the following condition holds:

f−1[U ] /∈M∧ f−1[V ] /∈M =⇒
[
f−1[U ]

]
M 6=

[
f−1[V ]

]
M .

A class of weakly Baire measurable functions is a superclass of a class of Baire measurable
functions.

The next theorem is a generalization of Banach theorem about a union of open first
category sets to the case of weakly Baire measurable functions.

Theorem 23 ([H1], Theorem 3.6). Assume that X is a metrizable space. Let f : T → X be
a weakly Baire measurable function. Let us consider a family

A = {f−1[U ] : U is open in X and f−1[U ] ∈M}.
Then

⋃
A ∈M.

An important tool in the proof of the previous theorem is Theorem 52 about completely
M-nonmeasurable union.

Theorem 24 ([H1], Theorem 3.8). Assume that X is a metrizable space. Let f : T → X be
a weakly Baire measurable function. Then there exists a set M ∈ M such that f [T \M ] is
separable.

In the proof the important tool is Kowalsky theorem saying that each metrizable space is
homeomorphic to a subspace of a hedgehog space.

Let us now consider the case of nonmetrizable space X . We do not expect negative
results in ZFC theory. Under some set-theoretic assumptions theorems about existence of
a nonmeasurable union can have weak assumptions.

We will focus on a concrete model. Let us consider a generic extension of the constructible
universe by adding ω2 Solovay reals.

Lemma 4 ([H1], Claim 4.1). In LRandom(ω2)[G] there exists a sequence (Kα)α∈ω2 of meager
sets such that

⋃
α∈AK

α = R for every uncountable A.
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The required set Kα is defined to be the translation of meager Fσ-set of full measure by
generic random real rα.

Lemma 5 ([H1], Claim 4.2). In LRandom(ω2)[G] the following statement is true: For every
σ-ideal I of subsets of ω1 there is a point-countable family {Kα}α∈ω1 such that for every
A ⊆ ω1

A ∈ I =⇒
⋃
α∈A

Kα ∈M

and
A /∈ I =⇒

⋃
α∈A

Kα is residual.

Lemma 6 ([H1], Claim 4.3 Cichoń). In LRandom(ω2)[G] the following statement is true: For
every σ-ideal I of subsets of ω1 there exists a function g : R→ ω1 such that for A ⊆ ω1

A ∈ I ⇐⇒ g−1[A] ∈M.

Theorem 25 ([H1], Theorem 4.4). In LRandom(ω2)[G] the following statement is true: Let ω1

be a topological space with the order topology. There exists a function f : R→ ω1 satisfying
the following conditions

(1) f is Baire measurable,
(2)

⋃
{f−1[U ] : f−1[U ] ∈M and U is open in the order topology} = R.

The space ω1 with the order topology is a normal space.

Images. A paper [H4] (written jointly with R. Ra lowski) generalizes results from [Ky] and
[CFF] concerning nonmeasurable algebraic sums in the unit interval or the Cantor cube.
Generalizations consist of replacing addition with another two-valued function, or, more
generally, realtion. Main theorems have quite technical formulations.

Theorem 26 ([H4], Theorem 3.1). Let T be any set, X – an uncountable Polish space and
I a σ-ideal with Borel base and the hole property. Let R ⊆ X2 × T be a binary relation
satysfying the following conditions:

(1) [R[X2]]I = T ,
(2) {x ∈ T : |{(a, b) ∈ X2 : ((a, b), x) ∈ R}| < }̧ ∈ I,
(3) (∀x ∈ T )(∀a ∈ X)(|{b ∈ X : ((a, b), x) ∈ R ∨ ((b, a), x) ∈ R}| ≤ ω),
(4) (∀x, y ∈ T )(x 6= y ⇒ |{(a, b) ∈ R−1[{x}] :
{(b, a), (a, a), (a, b), (b, b)} ∩R−1[{y}] 6= ∅}| ≤ ω),

(5) there exists a cardinal λ < c such that
(∀a, b ∈ X)(|R(a, b)| ≤ λ).

Then there exists a set A ⊆ X such that R[A× A] is completely I-nonmeasurable in T .

The following corollary of Theorem 26 generalizes a result from [CFF] and Theorem ??
from [Ky].

Corollary 1 ([H4], Corollary 3.2). Let f ∈ R[x, y] be any symmetric polynomial of two
variables with range equal to R. Then there exists a subset A ⊂ R such that f [A × A] is
Bernstein set in R.

Next theorem deals with a sequence of relations instead of one relation. The assumption
of full hole of the image of the relation is replaced by the assumption that the complement
of the image belongs to the ideal.
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Theorem 27 ([H4], Theorem 3.4). Let X be any set, T – an uncountable Polish space, I
– σ-ideal of subsets of T with Borel base. Let (Rα)α<c ⊆ (T 2 ×X)c be a sequence of binary
relations satisfying the following conditions:

(1) {x : |R−1α (x)| 6= c} ∈ I,
(2) |Rα ∩S| < λ for every S of the form ∆×{x}, {a}×T ×{x}, T ×{a}× {x}, where

a ∈ X, x ∈ T ,
(3) (∀B ∈ Bor(T ) \ I)(∃a ∈ X) |R−1α [B] ∩ {a} × T | = c,
(4) (∀(a, b) ∈ X2) |Rα(a, b)| < λ.

Then there exists A ⊆ X such that for every α < c the set Rα[A × A] is completely I-
nonmeasurable in T .

Theorem 27 let us obtain the following two corollaries concerning nonmeasurability with
respect to the σ-ideal of null subsets and the σ-ideal of meager sets respectively.

Corollary 2 ([H4], Corollary 3.3). There exists a subset A of the real line R such that
f [A× A] is completely N -nonmeasurable for every surjection f : R2 → R which is C1.

Corollary 3 ([H4], Corollary 3.4). There exists a subset A of the real line R such that
f [A × A] is completely M-nonmeasurable for every surjection f : R2 → R which is C1 and
its partial derivatives do not vanish almost everywhere.

Theorem 28 ([H4], Theorem 3.5). Let X1, X2 be any sets and T – an uncountable Polish
space, I – σ-ideal of subsets of T with Borel base. Let f : X1 ×X2 → T be an any function
satisfying the following conditions:

(1) f [X1 ×X2] = T,
(2) {x ∈ T : ω < |f−1(x)|} ∈ I,
(3) for every Borel subset B ∈ Bor(T ) \ I we have

|{a ∈ X1 : |{a} ×X2 ∩ f−1[B]| = }̧| = .̧

Then there exists A ⊆ X1 and B ⊆ X2 such that f [A × B] is completely I-nonmeasurable
in T . Moreover, if X1 = X2, then there exists A ⊂ X1 such that f [A × A] is completely
I-nonmeasurable.

Theorem 28 together with Mycielski’s theorem imply the following result.

Corollary 4 ([H4], Corollary 3.5). Let (X, IX), (Y, IY ) and (Z, IZ) be any Polish ideal
spaces. Let us assume that f : X × Y 7→ Z is a function having the following properties:

(1) f [X × Y ] = Z,
(2) {z ∈ Z : |{(x, y) ∈ X × Y : f(x, y) = z}| > ω} ∈ IZ,
(3) (∀B ∈ Bor(Z) \ IZ)(f−1[B] ⊆ X × Y has inner positive measure with respect to the

family Bor(X × Y ) \ (IX ⊗ IY )).

Then there exist A ⊆ X and B ⊆ Y such that f [A×B] is completely IZ-nonmeasurable.

Let us recall that IX ⊗ IY denotes the Fubini product of ideals IX and IY i.e. σ-ideal
generated by Borel subsets A ⊆ X × Y satisfying the following condition:

{x ∈ X : {y ∈ Y : (x, y) ∈ A} /∈ IY } ∈ IX .
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Subsets. We will discuss results concerning some special nonmeasurable sets. Properties
of these sets satisfy the notions defined below generalizing those of Luzin’s and Sierpiński’s
set.

Definition 8. We say that a set L is (I,J )-Luzin set if

(1) L /∈ I,
(2) for every set A ∈ I we have L ∩ A ∈ J .

Let κ be a cardinal number. We say that L is (κ, I,J )-Luzin set, if L is (I,J )-Luzin set
and L is of cardinality κ.

Let us notice that if J is equal to the family of all countable sets then we obtain the
classical definition of Luzin’s set (for I =M) and Sierpiński’s set (for I = N ). In a similar
way one can obtain so called generalized Luzin sets.

Definition 9. Let F ⊆ T T be a family of functions. We say that sets A,B are equivalent
with respect to F if:

(∃f ∈ F)(B = f [A] ∨ A = f [B]).

Let us start with a technical result.

Theorem 29 ([H7], Theorem 2.1). Assume that κ = cov(I) ≤ non(J ). Let F be a family
of functions mapping T into T such that |F| ≤ κ. Then there is a sequence (Lα)α∈κ such
that

(1) Lα is a (κ, I,J )-Luzin set,
(2) for α 6= β sets Lα, Lβ are not equivalent with respect to a family F .

The proof of this theorem uses transfinite induction.
Now, let us state some applications.

Corollary 2 ([H7], Corollary 2.1). Assume that cov(I) = non(J ) = c. Than there are
continuum many Borel not equivalent (I,J )-Luzin sets.

Corollary 3 ([H7], Corollary 2.2). Assume that cov(I) = non(J ) = c. Then there are con-
tinuum many (I,J )-Luzin sets not equivalent with respect to the family of all I-measurable
functions.

Corollary 4 ([H7], Corollary 2.3). (1) Assume that cov(N ) = c. Then there are con-
tinuum many (c,N ,M)-Luzin sets not equivalent with respect to the family of all
Lebesgue measurable functions.

(2) Assume that cov(M) = c. Then there are continuum many (c,M,N )-Luzin sets not
equivalent with respect to the family of all Baire measurable functions.

Now, let us describe a class of forcing notions preserving (I,J )-Luzin sets. We are mainly
interested in so called definable forcings (see [Za]), i.e. forcings of the type Bor(T ) \ I for
an absolutely definable σ-ideal I. Let us start with a technical lemma.

Lemma 7 ([H7], Lemma 3.1). Assume that I has Fubini property. Let PI = Borel(T ) \ I
be a definable forcing notion which is proper. Let B ∈ I be a set in V PI [G]. Then there is a
set D ∈ I ∩ V such that B ∩ T V ⊆ D.

Theorem 30 ([H7], Theorem 3.1). Assume that κ is an uncountable cardinal number, ideals
I,J have Suslin property and Fubini property. Let PI = Borel(T )\I and PJ = Borel(T )\J
be definable forcings. Then PI preserves (κ, I,J )-Luzin sets.
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Theorem 31 ([H7], Theorem 3.2). Let (P,≤) be a forcing notion such that a set

{B : B ∈ I ∩Borel(T ), B is coded in V }

forms a base of ideal I in V P[G]. Assume that Borel codes for the sets from ideals I, J are
absolute. Then (P,≤) preserves (I,J )-Luzin sets.

The latter theorem has some applications.

Corollary 5 ([H7], Corollary 3.1). Let (P,≤) be a forcing notion which does not add reals,

i.e. (ωω)V = (ωω)V
P[G]. Assume that Borel codes for the sets from ideals I, J are absolute.

Then (P,≤) preserves (I,J )-Luzin sets.

Corollary 6 ([H7], Corollary 3.2). Let (P,≤) be a σ-closed forcing notion. Assume that
Borel codes for sets from ideals I, J are absolute. Then (P,≤) preserves (I,J )-Luzin sets.

Corollary 7 ([H7], Corollary 3.3). Let λ be an ordinal number. Let Pλ = ((Pα, Q̇α) : α < λ)
be an iterated forcing with countable support. Assume that

(1) for every α Pα  Q̇α is σ-closed,
(2) Borel codes for sets from ideals I, J are absolute.

Then Pλ preserves (I,J )-Luzin sets.

In the following lemmas we will use the relation vrandom and vCohen defined by M. Gold-
stern in [Go]. Let Ω be a family of clopen subsets of the Cantor space 2ω with discrete
topology. Set

Crandom = {f ∈ Ωω : (∀n ∈ ω)µ(f(n)) < 2−n}.
For f ∈ Crandom set Af =

⋂
n∈ω
⋃
k≥n f(k). A relation vrandomn is defined by the formula

(∀f ∈ Crandom)(∀g ∈ 2ω)(f vrandomn g ↔ (∀k ≥ n)g /∈ f(k)).

vrandom=
⋃
n∈ω vrandomn .

Let CCohen be a set of functions from ω<ω into itself. Then

(∀f ∈ CCohen)(∀g ∈ ωω)(f vCohenn g ↔ (∀k < n)(g � k a f(g � k) ⊆ g)).

vCohen=
⋃
n∈ω vCohenn .

Theorem 32 ([H7], Theorem 3.4). Assume that P is a forcing notion which preserves rela-
tion vrandom. Then P preserver (N ,M)-Luzin sets.

Theorem 33 ([H7], Theorem 3.5). Assume that P is a forcing notion which preserves rela-
tion vCohen. Then P preserves (M,N )-Luzin sets.

The next corollary is based on a result of Shelah (see [Sh]) about preserving property
”every new open dense set contains an old open dense set“ by a countable support iteration
of proper forcings with the property mentioned.

Corollary 8 ([H7], Corollary 3.4). Let λ be an ordinal number. Let Pλ = ((Pα, Q̇α) : α < λ)
be an iterated forcing with countable support. Assume that

(1) for every α Pα  Q̇α is proper,
(2) Pα  Q̇α  every new dense open set contains an old dense set.

Then Pλ preserves (M,N )-Luzin sets.



14

Results from [H8] (co-authored by M. Michalski) concern I-Luzin sets. We will work in
Euclidean space Rn equipped with a natural addition + and multiplication · by real numbers.
Sometimes we will treat a Euclidean space as a linear space over the field of rationals Q. We
will assume that a σ-ideal I is translation invariant, i.e. for every x̄ ∈ Rn and A ∈ I we
have x̄+ A ∈ I.

Definition 10. We say that a set A is

• an I-Luzin set, if for every I ∈ I we have |A ∩ I| < |A|;
• a super I-Luzin set, if A is an I-Luzin set and for every Borel set B /∈ I we have
|A ∩B| = |A|.

Let us notice that that the classical definition of generalized Luzin set coincides with the
definition ofM-Luzin set, and the classical definition of generalized Sierpiński set coincides
with the definition of N -Luzin set.

Lemma 8 ([H8], Lemma 2.1). Let P , Q be perfect subsets of Rn. Then there exist perfect
subsets P ′ ⊆ P and Q′ ⊆ Q such that for every x ∈ Rn we have

|(P ′ + x) ∩Q′| ≤ 1.

Using Lemma 8 we can construct a translation invariant σ-ideal J with Borel base such
that there is a measurable, or even Borel, J -Luzin set.

Theorem 34 ([H8], Theorem 2.1). There exists a translation invariant σ-ideal J with Borel
base and a perfect set A which is a J -Luzin set.

Additional assumptions on ideal I ensure that every I-Luzin set is I-nonmeasurable.
The following definition was introduced in [BFN].

Definition 11. I has weaker Smital property, if there exists countable dense set D such that
(A+D)c ∈ I for every Borel set A /∈ I.

The property mentioned above is a generalization of the classical Smital property. Exam-
ples of natural σ-ideals possessing this property can be found in [BK] and [BFN].

Theorem 35 ([H8], Theorem 2.2). Assume that I has weaker Smital property. Then each
I-Luzin set is I-nonmeasurable.

In the proof of the latter theorem the crucial part is played by Lemma 8.

Lemma 9 ([H8], Lemma 2.2). Assume that I has weaker Smital property. Then the existence
of an I-Luzin set implies the existence of a super I-Luzin set.

Lemma 10 ([H8], Lemma 2.3). Let L be an I-Luzin set. Then there exists a linearly
independent I-Luzin set.

Lemma 11 ([H8], Lemma 2.4). Assume that I has weaker Smital property. Let L be an
I-Luzin set of cardinality c. Then there exists a linearly independent super I-Luzin set.

Theorem 36 ([H8], Theorem 2.3 and Theorem 2.4). Let L be a linearly independent I-Luzin
set of cardinality c. Then there exists a set X such that {x + L : x ∈ X} is a partition of
Rn. Moreover, under CH, X can be also an I-Luzin set.

Theorem 37 ([H8], Theorem 2.5, 2.6, 2.7, 2.8). Assume CH.
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• Assume that for every A ∈ I we have 1
2
A ∈ I. Then there is an I-Luzin set L such

that the set L+ L is an I-Luzin set.
• Assume that for every A ∈ I we have −A ∈ I.Then there is an I-Luzin set L such

that L+ L = Rn.
• Assume that I is closed under rational scaling, i.e. (∀x ∈ Q)(∀A ∈ I)(xA = {xa :
a ∈ A} ∈ I). Then for every m ∈ ω \ {0} there exists an I-Luzin set L such that
L+ L+ · · ·+ L︸ ︷︷ ︸

m

is an I-Luzin set and L+ L+ · · ·+ L︸ ︷︷ ︸
m+1

= Rn.

• Assume that I is closed under rational scaling. Then there exists a linearly indepen-
dent I-Luzin set L such that span(L) is an I-Luzin set.

Corollary 9 ([H8], Corollary 2.1). Assume CH. Let I be closed under scaling. Then

(1) there exists an I-Luzin set L such that L+ L+ · · ·+ L︸ ︷︷ ︸
n+1

is an I-Luzin set for every

n ∈ ω,
(2) there exists an I-Luzin set L such that L+ L = L,
(3) there exists an I-Luzin set L such that 〈L+ L+ · · ·+ L︸ ︷︷ ︸

n+1

: n ∈ ω〉 is ascending se-

quence of I-Luzin sets.

Theorem 38 ([H8], Theorem 2.9). It is consistent with ZFC that c = ω2 and there exists a
Luzin set which is a linear subspace of Rn.

In the proof of this theorem we consider a model which is a generic extension of a model
of CH by adding ω2 Cohen reals. The set from the conclusion of the theorem is a subspace
generated by added generic Cohen reals.

Theorem 39 ([H8], Theorem 2.10). Assume CH. There exists a Luzin set L such that
L+ L is a Bernstein set.

The proof uses a standard transfinite induction. To show that finding a suitable object
at a step α is possible we find a Σ1

2 sentence which implies it. We show that this sentence is
true in a generic extension of our model and we use Shoenfield theorem to prove that it is
true in the model we have started with.

Theorem 40 ([H8], Theorem 2.11). Assume CH. There exists a Sierpiński set S such that
S + S is a Bernstein set.

Next few lemmas show a connection of the algebraic structure of the space with the
topological structure and the measure structure.

Lemma 12 ([H8], Lemma 2.5). There exists a residual null set R and a nowhere dense
perfect null set P such that R + P ⊆ R.

This result can be seen as a generalization of a result from [Re], where I. Rec law showed
that for every null set A and every perfect set P there exists a perfect subset P ′ ⊆ P such
that A+ P has measure zero. In fact, the following stronger result is also true.

Lemma 13 ([H8], Lemma 2.6). Let A be a null set. There exists a perfect set P such that
for every n

A+ P + P + · · ·+ P︸ ︷︷ ︸
n

∈ N .
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Lemma 14 ([H8], Lemma 2.8). For every compact null set P there exist a residual Gδ G
such that a set G+ P is null.

In [BS] L. Babinkostova, M. Scheepers showed that for any Luzin set L and any Sierpiński
set S, the set L×S is Menger, and so is L+S. Menger sets are not Bernstein, thus L+S is
not a Bernstein set. Moreover in [Sc] M. Scheepers proved that if A is null and has property
s0 and S is a Sierpiński set then A + S has property s0. Next theorem slightly generalizes
these results under the hypothesis that c is a regular cardinal.

Theorem 41 ([H8], Theorem 2.12). Assume that c is a regular cardinal. For every gen-
eralized Luzin set L and for every generalized Sierpiński set S, a set L + S has property
s0.

The proof of this theorem uses Lemma 14.
The next theorem shows that the assumption of regularity of c cannot be omitted.

Theorem 42 ([H8], Theorem 2.13). The following sentence is consistent with ZFC: There
exist a generalized Luzin set L and a generalized Sierpiński set S such that L+ S = Rn.

The construction of the required model is done in the following steps. We start with a
model of GCH. Let Pα be a finite support iteration of (Q̇β : β < α), where β Q̇β =
C ×Rℵβ+2

for β < α. C denotes the forcing notion adding one Cohen real (as an element of
Rn) and Rκ is the forcing notion adding κ independent Solovay reals (as elements of Rn).
In the final model we define the required sets in the following way

S =
⋃
α∈ω1

Rα ∪ {−cα}, L =
⋃
α∈ω1

{cα + x : x ∈ Rn ∩ Vα}.
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Other research achievements

A list of papers in other research achievements:

[P1] Sz. Żeberski, Nonstandard proofs of Eggelston like theorems, Proceedings of the
Ninth Prague Topological Symposium (Prague 2001) Topology Atlas (Toronto
2002), 353-357,

[P2] J.Cichoń, Sz. Żeberski, On the splitting number and Mazurkiewicz theorem, Acta Uni-
versitatis Carolinae, Mathematica et Physica 42 (2) (2001), 23-25,

[P3] J.Cichoń, M.Morayne, R.Ra lowski, C.Ryll-Nardzewski, Sz. Żeberski, On nonmeasurable
unions, Topology and its Applications 154 (2007), 884-893,

[P4] R. Ra lowski, P. Szczepaniak, Sz. Żeberski, A generalization of Steinhaus theorem and
some nonmeasurable sets, Real Analysis Exchange, 35 (1) (2009/2010), 1-9,

[P5] J. Kraszewski, R. Ra lowski, P. Szczepaniak, Sz. Żeberski, Bernstein sets and kappa
coverings, Mathematical Logic Quarterly, 56 (2) (2010), 216-224,

[P6] M. Bienias, Sz. G la̧b, R. Ra lowski, Sz. Żeberski, Two point sets with additional proper-
ties, Czechoslovak Mathematical Journal, 63 (4) (2013), 1019-1037,

[P7] T. Banakh, M. Morayne, R. Ra lowski, Sz. Żeberski, Topologically invariant σ-ideals on
Euclidean spaces, Fundamenta Mathematicae, 231 (2015), 101-112,

[P8] T. Banakh, M. Morayne, R. Ra lowski, Sz. Żeberski, Topologically invariant σ-ideals on
the Hilbert cube, Israel Journal of Mathematics, 209 (2015), 715–743,

[P9] T. Banakh, R. Ra lowski, Sz. Żeberski, Classifying invariant σ-ideals with analytic base
on good Cantor measure spaces, accepted to Proceedings of the American Math-
ematical Society.

The paper [P1] contains a nonstandard proof of the Eggelston theorem which says that
every subset of the plane of positive Lebesgue measure contains a product of two perfect sets.
The proof is based on Shoenfield theorem about Σ1

2-absoluteness and theorem from [CKP]
saying that a Boolean algebra Borel/N contains a dense subset of cardinality cof(N ).

Moreover, using similar techniques, the following result was proved.

Theorem 43 ([P1], Theorem 4). Let A ⊆ [0, 1]2 be of measure 1. Then we can find two
sets F,Q ⊆ [0, 1] satisfying conditions: F is Fσ-set of measure 1, Q is a perfect set and
F ×Q ⊆ A.

The analogous results concerning the ideal of meager sets were also showed.

Theorem 44 ([P1], Theorem 5). Let A ⊆ [0, 1]2 be a nonmeager that has Baire property.
Then we can find two sets G,Q ⊆ [0, 1] satisfying conditions: G is Gδ-set, G /∈ M, Q is a
perfect set and G×Q ⊆ A.

Theorem 45 ([P1], Theorem 6). Let A ⊆ [0, 1]2 be a residual set. Then there exist two sets
C,Q ⊆ [0, 1] satisfying conditions: C is a dense Gδ, Q is a perfect set and C ×Q ⊆ A.

In [P2] (written jointly with J. Cichoń) a nonstandard proof of Mazurkiewicz theorem was
given. Mazurkiewicz theorem says that for every sequence {fn}n∈ω of Borel functions from
[0, 1] into [0, 1] we can choose a subsequence point-wise converging on some perfect subset.
The proof is based on Shoenfield absoluteness theorem and the following characterization of
a splitting number s.
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Lemma 15 ([P2], Lemma 1). The following cardinal numbers are all equal:

(1) s = min{κ : {0, 1}κ is not sequentially compact }
(2) s′ = min{κ : ({0, 1}ω)κ is not sequentially compact }
(3) s′′ = min{κ : [0, 1]κ is not sequentially compact }

In [P3] (co-authored by J. Cichoń, M. Morayne, R. Ra lowski and Cz. Ryll-Nardzewski)
results concerning finding subfamilies with completely I-nonmeasurable union were obtained.
Additional assumptions involving cardinal coefficients of I were used. These assumptions
for many natural σ-ideals are independent of ZFC.

Theorem 46 ([P3], Theorem 3.2). Assume that I is a σ-ideal with Borel base on a Polish
space T and cov(I) = cof(I). Let A ⊆ I be a family such that T \

⋃
A ∈ I. Let A be point

small, i.e. {
x :∈ T :

⋃
{A ∈ A : x /∈ A} /∈ I

}
∈ I.

Then there exists a subfamily A′ ⊆ A with completely I-nonmeasurable union
⋃
A′.

Theorem 47 ([P3], Theorem 3.1). Let I be a σ-ideal on a Polish space T such that there
exists a completely I-nonmeasurable set of cardinality smaller than covh(I). Then for every
family A ⊆ I such that T \

⋃
A ∈ I there exists a subfamily A′ ⊆ A with completely

I-nonmeasurable union
⋃
A′.

For the σ-ideal of meager subsets of the real line R the hypothesis of Theorem 47 is fulfilled
in the generic extension of the constructible universe L by ω2 independent Cohen reals. Then
cov(M) = ω2 = c and the required completely nonmeasurable set is of the form:

{cξ + r ∈ R : ξ < ω1 ∧ r ∈ Q}.
Similar argument works in the case of the null ideal N , if we add ω2 independent random
reals to L.

Theorem 47 has an application in the paper [Kuz] of Y. Kuznetzova connected with har-
monic analysis. Kuznetzova asked the question if for every nonempty null set A ∈ N there
exists a set B such that the algebraic sum A+ B is nonmeasurable. In every model, where
the conclusion of Theorem 47 is true for measure (e.g. in the model obtained by adding
ω2 random reals to L) the answer to Kuznetzova’s question is positive. As a consequence,
every measurable homomorphism between a locally compact group and a topological group
is continuous.

Theorem 46 was used to find nonmeasurable unions in some families of subsets of abelian
Polish groups with translation invariant σ-ideals. We say that a set C ⊆ G is I-Gruenhage
if for every I-measurable set B and for every set T ∈ [G]<c, the set B \ (C+T ) is nonempty.
Darji and Keleti [DK] proved that if C ⊆ R is a compact set with packing dimension
dimp(C) < 1 then R 6= T + C for T ∈ [R]<c. The classical Cantor set C is an example of
N -Gruenhage set.

Theorem 48 ([P3], Theorem 5.2). If I is a translation invariant σ-ideal with Borel base
on an abelian Polish group (G,+) then for every set C ⊆ G, such that C ∪ −C is an I-
Gruenhage set there exists P ⊆ G such that P + C is a completely I-nonmeasurable set in
G.

It is natural to ask if the conclusion of this theorem can be strengthened to P ⊆ C. The
answer is positive for the classical Cantor set. The following theorem was proved using the
ultrafilter method.
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Theorem 49 ([P3], Corollary 5.10). If C is the classical Cantor set then there exists its
subset P ⊆ C such that the algebraic sum P + C is Lebesgue nonmeasurable.

Theorem 50 ([P3], Theorem 4.1). Assume that T is an uncountable Polish space and a
family A ⊆ [T ]≤ω is point-countable, i.e. for every x ∈ T {A ∈ A : x ∈ A} ∈ [A]≤ω. If⋃
A = T then there exists a subfamily A′ ⊆ A such that

⋃
A′ is a Bernstein set.

Theorem 51 ([P3], Theorem 4.4). Let I be a σ-ideal with Borel base on a Polish space
T . If A ⊆ P (T ) is Bor(T )[I]-sumable family of countable closed sets of countable bounded
Cantor-Bendixon rank, i.e.

(∃α < ω1)(∀A ∈ A) (Aα = ∅),
then

⋃
A ∈ I.

As a corollary we obtain that if A is a family of countable closed sets of countable bounded
Cantor-Bendixon rank such that

⋃
A /∈ I then there exists a subfamily A′ ⊆ A with I-

nonmeasurable union
⋃
A′.

Theorem 52 ([P3], Theorem 6.8). Every partition of the real line into meager sets contains
a subfamily with completely M-nonmeasurable union.

The proof of Theorem 52 uses Gitik Shelah theorem from [GS1] saying that Boolean
algebra of the type P (κ)/I cannot be isomorphic to the Cohen algebra and Erdős-Alaoglu
theorem or, more precisely, its version from [Ta].

In [P5] (written jointly with J. Kraszewski, R. Ra lowski and P. Szczepaniak) authors con-
sider subsets of abelian Polish groups which cover some translation of every set of cardinality
κ (for a fixed cardinal κ). Such sets are called κ-covering. Analogously, we say that a set
A contained in a group G is < κ-covering if every subset of G of cardinality less than κ can
be translated into A. An inspiration for this research were results obtained by K. Muthuvel
in [Mu] concerning mainly κ-covering sets for a finite cardinal number κ and results of A.
Nowik from [No1, No2], where the author considers ω- or < ω-covering sets of low descriptive
class.

Theorem 53 ([P5], Theorem 2.1). There exists a partition of the real line R into two
Bernstein sets such that none of them is a 2-covering set.

Theorem 54 ([P5], Theorem 2.2, Proposition 2.5). There exists a partition of the real line
R into continuum many Bernstein sets such that each of them is < cof(c)-covering set.

Moreover if I is a σ-ideal on the real line R having Steinhaus property then the assumption
non(I) < c implies the existence of completely I-nonmeasurable set which is < c-covering.

The notion of κ-covering set has natural generalizations, namely S-covering and I-covering.

Definition 12. We say that a family A is κ-S-covering if

• is a family of pairwise disjoint subsets of the real line R,
• |A| = κ,
• (∀F ∈ [R]κ)(∃t ∈ R)(∀A ∈ A) |(t+ F ) ∩ A| = 1.

The results of [P5] concern families A whose elements are completely nonmeasurable sets
with respect to some σ-ideals on R. Let us state the following example.

Theorem 55 ([P5], Theorem 3.3). Let κ be a cardinal number, 2 < κ < c. If 2κ ≤ c then
there exists a partition of R into Bernstein sets {Bξ : ξ < κ} such that
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• for every ξ < κ Bξ is not a 2-covering set, but
• {Bξ : ξ < κ} is a κ-S-covering.

MA implies that if ω ≤ κ < c then 2κ = c, which guaranties that the conclusion of
Theorem 55 is consistent with ZFC.

A slightly more general context can be found in the following result.

Theorem 56 ([P5], Theorem 3.5). Let κ be a cardinal number such that 2κ = c. Let (G,+)
be an uncountable abelian Polish group with a metric d. Moreover, let I ⊆ P (G) be a σ-ideal
on G satisfying the following conditions

• (∀B ∈ Bor(G) \ I)(∀D ∈ [I]<c) |B \
⋃
D| = c,

• there exists a ∈ rng(d) \ {0} such that (∀x ∈ G) {y ∈ G : d(x, y) = a} ∈ I.

Then there exists a family {Bξ : ξ < κ} of pairwise disjoint sets such that

(1) Bξ is a completely I-nonmeasurable subset of G for every ξ < κ,
(2) Bξ is not a 2-covering set for any ξ < κ,
(3) {Bξ : ξ < κ} is κ-S-covering.

The translation in the definition of κ-covering set can be replaced by any isometry e.g. of
the plain. Let us introduce a notion called κ-I-covering set.

Definition 13. A subset of the plain A ⊆ R2 is a κ-I-covering set if

(∀B ∈ [R2]κ)(∀ϕ)(ϕ : R2 → R2 is an isometry and ϕ[B] ⊆ A).

The next two theorems show the difference between 2-I-covering and 3-I-covering sets.

Theorem 57 ([P5], Theorem 4.3). Every Bernstein set in R2 is a 2-I-covering set.

Theorem 58 ([P5], Theorem 4.4). There exists a Bernstein set in R2 which is not a 3-I-
covering set.

The conclusion of Theorem 57 cannot be generalized to any completely I-nonmeasurable
sets.

Theorem 59 ([P5], Theorem 4.5). If I ∈ {N ,M} then there exists a completely I-nonmea-
surable set in R2 which is not a 2-I-covering set.

The aim of a paper [P6] (co-authored by M. Bienias, Sz. G la̧b and R. Ra lowski) was exam-
ining sets defined by S. Mazurkiewicz. These sets are known in the literature as Mazurkiewicz
sets or two-point sets.

Definition 14. We say that a subset of the plane A ⊆ R2 is a Mazurkiewicz set if its
intersection with every line has cardinality 2.

It is known that Mazurkiewicz sets are quite complicated. D. Larman in [La] showed
that a Mazurkiewicz set cannot be of type Fσ. A. Miller in [Mi] constructed co-analytic
Mazurkiewicz set in L.

Theorem 60 ([P6], Theorem 2.2). Let I be a σ-ideal with Borel base containing singletons.
There exists a Mazurkiewicz set M which is a Hamel base of the space R2 over the field of
rationals Q and M is a completely I-nonmeasurable set.

Theorem 61 ([P6], Theorem 3.3). There is a Mazurkiewicz set which belongs to the Mar-
czewski ideal s0.
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Theorem 62 ([P6], Theorem 3.5). Assume that for every Borel set B outside σ-ideal I
there exist c many parallel lines and each of them intersects B in continuum many points.
Then

(1) there exists a Mazurkiewicz set A belonging to s0 which is a Hamel base and A is a
completely I-nonmeasurable set,

(2) there exists a Mazurkiewicz set B which is a Hamel base and is completely I-nonmeasu-
rable and is not measurable in the sense of Marczewski.

The notion of Mazurkiewicz set can be naturally generalized to κ-point set for given
cardinal number 2 ≤ κ ≤ c. A κ-point set is a set which intersects every line in κ many
points.

Theorem 63 ([P6], Theorem 4.6). Let n ≥ 2 be a natural number. Every n-point set can
be partitioned into n pairwise disjoint bijections from R to R.

The following theorem shows a connection between Bernstein and Mazurkiewicz sets.

Theorem 64 ([P6], Theorem 4.9). For every Bernstein set B ⊆ R there exists a Mazurkiewicz
set A ⊆ R2 which is of measure zero and of first category in R2 such that for every function
f ⊆ A, preimage f−1[(0, 1)] is equal to B.

Mazurkiewicz set can be neither Bernstein set nor Luzin set, nor Sierpiński set. This fact
was a motivation to define partial Mazurkiewicz set, i.e. a set which has at most two point
intersection with every line.

Theorem 65 ([P6], Theorem 5.5). Assume CH. Then there exists a Luzin set which is a
partial Mazurkiewicz set.

The analogous result is true for Sierpiński’s set.
In the next theorems connection between κ-point sets and λ-covering sets was examined.

Theorem 66 ([P6], Theorem 6.3, 6.4). (1) There exists an ω-point set which is not a
2-I-covering set.

(2) There exists an ω-point set which is an ω-covering set.

Theorem 67 ([P6], Theorem 6.5). Consider a model of ZFC obtained by adding ω2 inde-
pendent Cohen reals to the constructible universe L. In this model ω1 < c = ω2 and there
exists ω1-point set which is an ω1-covering set.

Theorem 68 ([P6], Theorem 6.7). Let n > 1 be a natural number. Then

(1) there exists an n-point set A which is not a 2-I-covering set,
(2) there exists an n-point set B which is an n-covering set.

In [P6], combinatorial properties of Mazurkiewicz sets from the point of view of families
of almost disjoint sets were also considered.

Theorem 69 ([P6], Theorem 7.1). Let h be a fixed definable Borel bijection between the real
line R and the Ramsey space [ω]ω. Let π1, π2 be the orthogonal projections of the plain R2 on
the first coordinate, on the second coordinate. It is relatively consistent with ZFC that ¬CH
and there exists a partial Mazurkiewicz set A ⊆ R2 such that h[π1[A] ∪ π2[A]] is a maximal
almost disjoint family of cardinality ω1.
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Theorem 70 ([P6], Theorem 7.5). In the model obtained by adding ω2 Cohen reals to the
constructible universe L there exists a partial Mazurkiewicz set C ⊆ R2 of cardinality ω2

which is a Luzin set and fulfills the following condition

(∃A ∈ N )(∀D ∈ [C]ω1) A+D = R2.

The analogous result concerning Sierpiński set can be proved in a model obtained by
adding ω2 independent Solovay reals.

An inspiration for the paper [P4] (written jointly with R. Ra lowski and P. Szczepaniak)
was classical Steinhaus theorem saying that for every A,B ⊆ R of positive Lebesgue measure,
an algebraic sum A+B has nonempty interior.

The following result generalizes the Steinhaus theorem mentioned above.

Theorem 71 ([P4], Theorem 2.1). Let I be equal to N or M. Assume that a function
f : R× R→ R is C1 and{

(x, y) ∈ R2 :
∂f

∂x
(x, y) = 0 ∨ ∂f

∂y
(x, y) = 0

}
∈ I.

Let A,B ∈ Bor(R) \ I be Borel sets outside σ-ideal I. Then the set f [A × B] contains
nonempty open interval on the real line R.

Steinhaus theorem, in its original version, was an important tool in a proof of Cichoń-
Szczepaniak theorem (see [CS]) about a ball in euclidean space.

Theorem 72 (Cichoń-Szczepaniak). Let m,n be two different positive natural numbers and
f : Rn → Rm be an isomorphism between linear spaces over the field of rationals Q. If a set
A ⊆ Rn and its complement have nonempty interior in Rn then the image f [A] ⊆ Rm has
inner Lebesgue measure zero and a full outer Lebesgue measure in Rm.

Theorem 72 was a tool to obtain nonmeasurable sets with some algebraic properties.
Examples of such applications are the following theorems from discussed paper.

Theorem 73 ([P4], Theorem 3.2). There exists completely N -nonmeasurable set A ⊆ R
such that A+ A = A and A− A = R.

Theorem 74 ([P4], Theorem 3.3). There exists a partition A = {An : n ∈ ω} of the real line
R into completely N -nonmeasurable sets such that for every n ∈ ω we have An + An = An.

Theorem 75 ([P4], Theorem 3.5). There exists a partition A = {An : n ∈ ω} of the real
line R into completely N -nonmeasurable sets such that

(∀m,n ∈ ω) m 6= n⇒ Am + An = R \ {0}.
There are versions of these theorems for finite partitions of the real line R.

Theorem 76 ([P4], Theorem 3.7). There exists a set A ⊆ R such that A,A+A,A+A+A, . . .
are completely N -nonmeasurable and

⋃
n∈ω

A+ . . .+ A︸ ︷︷ ︸
n

= R.

The latter theorem has also its finite version.

Theorem 77 ([P4], Theorem 3.9). There exists a set A ⊆ R such that

A ( A+ A ( A+ A+ A ( . . .

are completely N -nonmeasurable and
⋃
n∈ω

A+ . . .+ A︸ ︷︷ ︸
n

is completely N -nonmeasurable in the

real line R.
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Theorem 78 ([P4], Theorem 3.11). There exist a set A ⊆ R such that

A ) A+ A ) A+ A+ A ) . . .

are completely N -nonmeasurable in the real line R.

In [P4] there are also multiplicative versions of previously cited results.

Theorem 79 ([P4], Corollary 3.2). There exist a completely N -nonmeasurable set A ⊆ R
such that A · A = A.

Theorem 80 ([P4], Corollary 3.3). There exists a set A ⊆ R such that

A ( A · A ( A · A · A ( . . .

are completely N -nonmeasurable and
⋃
n∈ω

A · . . . · A︸ ︷︷ ︸
n

is completely N -nonmeasurable set in

the real line R.

Ideals. In [P7] (co-authored by T. Banakh, M. Morayne and R. Ra lowski), nontrivial topo-
logically invariant σ-ideals in euclidean space Rn were considered. We say that ideal is
topologically invariant if for every set A ∈ I and for every homeomorphism h : Rn → Rn

the image h[A] belongs to ideal I. σ-ideal I is called nontrivial if Rn /∈ I and there exists
an uncountable set in I.

Theorem 81 ([P7], Theorem 2.1). Every nontrivial σ-ideal I with BP-base of Euclidean
space Rn is contained in ideal M of meager sets.

From the latter theorem follows that σ-ideal M is the largest σ-ideal considered.
The smallest σ-ideal in topologically invariant nontrivial σ-ideals with Borel base were

also described. Namely, it is σ-ideal σC0 generated by tame Cantor sets. A Cantor set C is
called tame Cantor set if there is a homeomorphism h : Rn → Rn such that h[C] is contained
in the line R× {0̄}.

Theorem 82 ([P7], Theorem 2.2). The σ-ideal σC0 is contained in every nontrivial topolog-
ically invariant σ-ideal I with an analytic base in Rn.

Let us recall that for any ideals I, J on a Polish space, relative coefficients are defined
in the following way

add(I,J ) = min{|A| : A ⊆ I ∧
⋃
A /∈ J },

cof(I,J ) = min{|B| : B ⊆ J ∧ (∀A ∈ I)(∃B ∈ B)A ⊆ B}.
The next theorem describes cardinal coefficients of the σ-ideal σC0.

Theorem 83 ([P7], Theorem 2.4). The following equalities are true

(1) cov(σC0) = cov(M),
(2) non(σC0) = non(M),
(3) add(σC0) = add(σC0,M) = add(M),
(4) cof(σC0) = cof(σC0,M) = cof(M).

The latter result allows us to calculate or at least estimate cardinal coefficients of any
topologically invariant nontrivial σ-ideal I.

Corollary 10 ([P7], Corollary 2.5). Let I be topologically invariant nontrivial σ-ideal of
subsets of Rn with analytic base. Then
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(1) cov(I) = cov(M),
(2) non(I) = non(M),
(3) add(I) ≤ add(M),
(4) cof(I) ≥ cof(M).

Thus, for X = Rn, the following variant of Cichoń’s diagram describes relations between
cardinal characteristics of the ideal M and any nontrivial topologically invariant σ-ideal I
(a→ b stands for a ≤ b):

non(I) non(M) // cof(M) // cof(I) // c

ω1
// add(I)

OO

// add(M)

OO

// cov(M)

OO

cov(I)

OO

The following example shows that the inequalities add(I) ≤ add(M) and cof(M) ≤ cof(I)
can be strict.

Example 1 ([P7], Example 2.6). The σ-ideal II ⊆ P (R2) generated by the interval I =
[0, 1]× {0} in the plane R2 has cardinal characteristics:

add(II) = ω1, non(II) = non(M), cov(II) = cov(M), and cof(II) = c.

It turns out that cardinal characteristics for some class of ideals coincide with the respective
cardinal characteristics of the ideal M of meager subsets of Rn.

Theorem 84 ([P7], Theorem 2.7). For every number 0 ≤ k < n the σ-ideal σDk generated
by closed at most k-dimensional subsets of Rn has cardinal characteristics:

add(σDk) = add(M), cov(σDk) = cov(M),

non(σDk) = non(M), cof(σDk) = cof(M).

A motivation in [P8] (written jointly with T. Banakh, M. Morayne and R. Ra lowski) was
a question posed on the web page of M. Csärnyei, if the minimal cardinality of the family of
Cantor sets covering the Hilbert cube Iω is the same as the minimal cardinality of the family
of Cantor sets covering the unit interval I = [0, 1]. Paper [P8] gives a positive answer.

In this paper topologically invariant nontrivial σ-ideals on the Hilbert cube Iω equipped
with product topology were considered. Next theorem describes the role of the ideal M of
meager subsets of Iω.

Theorem 85 ([P8], Theorem 1.1). The ideal M of meager subsets of the Hilbert cube Iω is:

(1) a maximal nontrivial topologically invariant ideal with BP-base on Iω, and
(2) the largest nontrivial topologically invariant ideal with σ-compact base on Iω.

In [P8] it was proved that the family of all nontrivial topologically invariant σ-ideals with
analytic base on the Hilbert cube Iω contains the smallest element, namely the σ-ideal σC0
generated by so called tame Cantor sets in Iω. So, the smallest element is described in
the same way as in the case of Euclidean space Rn. Observe that in the Hilbert cube, σC0
coincides with the σ-ideal generated by zero-dimensional Z-sets in Iω. A closed subset A of a
topological space X is called a Z-set in X if for any open cover U of X there is a continuous
map f : X → X \ A, which is U-near to the identity map in the sense that for each x ∈ X
the set {f(x), x} is contained in some set U ∈ U .
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Theorem 86 ([P8], Theorem 1.2). The σ-ideal σC0 is contained in each topologically invari-
ant nontrivial (σ-)ideal I with analytic base on Iω.

In the study of cardinal coefficients of σ-ideal σC0 an important tools were combinatorial
descriptions of cov(M), non(M) given by T. Bartoszyński (see e.g. [Ba],[BJ]). Concerning
add and cof the main tool was the fact that the space of all homeomorphisms on the Hilbert
cube Iω is a Polish space equipped with the compact-open topology which is given by the
following metric

d̃(f, g) = sup
x∈Iω

d(f(x), g(x)) + sup
x∈Iω

d(f−1(x), g−1(x)).

The important tool was also the Z-Set Unknotting Theorem (see [Ch]) saying that any
two Cantor Z-sets A,B ⊆ Iω are ambiently homeomorphic, which means that there is a
homeomorphism h : Iω → Iω such that h[A] = B.

Connections between cardinal coefficients of σ-ideals M and σC0 are described in the
following theorem.

Theorem 87 ([P8], Theorem 1.5). • non(σC0) = non(M),
• cov(σC0) = cov(M),
• add(σC0) = add(M) = add(σC0,M),
• cof(σC0) = cof(M) = cof(σC,M).

In [P8] the smallest topologically invariant σ-ideal not included inM was found. It turns
out that it is the σ-ideal σG0 generated by so called tame-Gδ sets,

An open subset U of Iω is called a tame open ball if

• its closure Ū in Iω is homeomorphic to the Hilbert cube;
• its boundary ∂U in Iω is homeomorphic to the Hilbert cube;
• ∂U is a Z-set in Ū and in Iω \ U .

By [Ch], tame open balls form a base of the topology of the Hilbert cube.
A subset U of Iω is called a tame open set in Iω if U =

⋃
U for some vanishing family U of

tame open balls with pairwise disjoint closures in Iω. The family U is unique and coincides
with the family C(U) of all connected components of U . By C̄(U) = {C̄ : C ∈ C(U)} we
shall denote the (disjoint) family of closures of all connected components of the set U .

A subset G of Iω is called a tame Gδ-set in Iω if G =
⋂
n∈ω Un for some sequence (Un)n∈ω of

tame open sets in Iω such that
⋃
C̄(Un+1) ⊆ Un for every n ∈ ω and the family

⋃
n∈ω C̄(Un)

is vanishing in Iω.
By [BR], a dense Gδ-set G in Iω is minimal (i.e. for every dense Gδ-set H there is a

homeomorphism h of the Hilbert cube such that h[G] ⊆ H) if and only if G is a dense tame
Gδ set in Iω.

Theorem 88 ([P8], Theorem 1.3). The σ-ideal σG0 is contained in each topologically in-
variant σ-ideal I 6⊆ M with BP-base on Iω.

The cardinal coefficients of the smallest topologically invariant σ-ideal with BP-base, which
is not contained in the idealM of meager subsets in Iω are described in the following theorem.

Theorem 89 ([P8], Theorem 1.6).

ω1 ≤ add(σG0) ≤ cov(σG0) ≤ add(M) ≤ cof(M) ≤ non(σG0) ≤ cof(σG0) ≤ c.
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Summarizing, the cardinal characteristics of any nontrivial topologically invariant σ-ideals
I ⊆ M and J 6⊆ M with analytic base on the Hilbert cube fit in the following variant of
Cichoń’s diagram:

Theorem 90 ([P8], Corollary 1.7).

non(σG0) // non(J ) // cof(J ) // c

non(I) non(M) // cof(M) //

OO

cof(I)

==

add(I)

OO

// add(M)

OO

// cov(M)

OO

cov(I)

OO

ω1

00

// add(J ) // cov(J ) // cov(σG0)

OO

Next, we describe certain topologically invariant σ-ideals I with σ-compact base on the
Hilbert cube whose cardinal characteristics coincide with the respective cardinal character-
istics of the idealM. In the following definition for a compact topological space X by K(X)
we shall denote the family of all compact subsets of X endowed with the Vietoris topology.
The hyperspace K(X) is partially ordered by the inclusion relation.

Definition 15. An ideal I on a topological space X

• is a Gδ-ideal if the set I ∩ K(X) is of type Gδ in the hyperspace K(X);
• has the Solecki property (∗) if for any countable family A ⊆ I ∩K(X) the union

⋃
A

is contained in a Gδ-subset G ⊆ X such that K(G) ⊆ I;
• is a σ(∗)-ideal if there is a sequence (In)n∈ω of Gδ-ideals with the Solecki property

(∗) on X such that I = {A ∈ P(X) : A ⊆
⋃
A for a countable subfamily A ⊂⋃

n∈ω In ∩ K(X)}.

Ideals with above properties were considered by S. Solecki in [So].

Theorem 91 ([P8], Corollary 1.10). For any nontrivial topologically invariant σ(∗)-ideal I
on Iω has

add(I) = add(M), cov(I) = cov(M), non(I) = non(M) and cof(I) = cof(M).

Using Theorem 91 we calculate the cardinal characteristics of the σ-ideals σ(Zn ∩ Dm),
n,m ≤ ω, thus answering Problem 2.6 of [BCZ]. The σ-ideal σ(Zn ∩ Dm) is generated by
closed Zn-subsets of Iω of topological dimension smaller or equal to m.

Corollary 11 ([P8], Corollary 1.11). For every n,m ≤ ω the σ-ideal I = σ(Zn ∩ Dm) is a
σ(∗)-ideal on Iω with cardinal characteristics

add(I) = add(M), cov(I) = cov(M), non(I) = non(M), cof(I) = cof(M).

In paper [P9] (co-authored by T. Banakh and R. Ra lowski) σ-ideals invariant under home-
omorphisms preserving measure on good Cantor measure spaces were classified.

A Cantor measure space is a pair (X,µ) consisting of a topological space X and a σ-
additive measure µ : B(X) → [0,∞) defined on the σ-algebra of Borel subsets of X where
X is a homeomorphic copy of the Cantor cube {0, 1}ω. A Cantor measure space (X,µ) is
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called good if its measure µ is good in the sense of Akin [Ak], i.e., µ is continuous, strictly
positive (which means that µ(U) > 0 for any nonempty open set U ⊆ X), and satisfies the
Subset Condition which means that for any clopen sets U, V ⊆ X with µ(U) < µ(V ) there
is a clopen set U ′ ⊆ V such that µ(U ′) = µ(U).

The class of good Cantor measure spaces includes all infinite compact metrizable zero-
dimensional topological groups G endowed with the Haar measure.

Theorem 92 ([P9], Theorem 1.1). Each nontrivial invariant σ-ideal with analytic base on
a good Cantor measure space (X,µ) is equal to one of the σ-ideals: E , N ∩M, N , M. (E
is the σ-ideal generated by closed µ-measure zero sets.)

Theorem 92 is a consequence of series of lemmas describing homogeneity properties of
good Cantor measure spaces.

Lemma 16 ([P9], Lemma 2.2). Let (X,µ) be a good Cantor measure space, U ⊆ X be a
clopen set and K ⊆ U be a compact subset. For every α ∈ µ[Clop(X)] with µ(K) < α ≤ µ(U)
there is a clopen subset V ⊆ U such that K ⊆ V and µ(V ) = α.

Lemma 17 ([P9], Lemma 2.4). Any measure-preserving homeomorphism f : A→ B between
closed nowhere dense subsets A,B ⊆ X of a good Cantor measure space (X,µ) extends to a
measure-preserving homeomorphism f : X → X of X.

Lemma 18 ([P9], Lemma 2.5). Let (X,µ), (Y, λ) be Cantor measure spaces such that µ(X) <
λ(Y ) and the measure λ is strictly positive. Let GX ⊆ X and GY ⊆ Y be two Gδ-sets of
measure µ(GX) = λ(GY ) = 0 such that GY is dense in Y . Then there is a measure-preserving
embedding f : X → Y such that f [GX ] ⊆ GY .

Lemma 19 ([P9], Lemma 2.6). Let (X,µ) be a good Cantor measure space, A be a closed
nowhere dense subset and B ⊆ X be a Borel subset of measure µ(B) > µ(A) in X. Then
there is a measure-preserving homeomorphism h : X → X such that h[A] ⊆ B.

Lemma 20 ([P9], Lemma 2.9). Let (X,µ) be a good Cantor measure space and d be a metric
generating the topology of X. Let B ⊆ X be a Borel subset of measure µ(B) = µ(X). For
any ε, homeomorphism f ∈ Hµ(X) and closed nowhere dense subsets A ⊆ C in X with
f(A) ⊆ B, there exists a homeomorphism g ∈ Hµ(X) such that g � A = f � A, g[C] ⊆ B
and dH(f, g) < ε.

Lemma 21 ([P9], Lemma 2.10). For any meager Fσ-sets A,B ⊆ X of measure µ(A) =
µ(B) = µ(X) in a good Cantor measure space (X,µ) there is a measure-preserving homeo-
morphism h ∈ Hµ(X) such that h[A] = B.

Lemma 22 ([P9], Lemma 2.11). If an analytic subset A ⊆ X of a Cantor measure space
(X,µ) is not contained in the σ-ideal E, then A contains a Gδ-subset G of X such that
µ(G) = 0 and the measure µ � Ḡ is strictly positive.
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