Charm quark production from SPS to LHC (and back again)

Ionut-Cristian Arsene University of Oslo 23/09/2020

Iceland Liechtenstein **Norway** grants

CHARMHI – Charm in heavy-ion collisions

- Polish-Norwegian joint project for the next 3 years
- Primary objectives:
 - Measure charm hadron production in Pb-Pb collisions
 - The first in the SPS energy regime
 - Reference for charmonium suppression measurements
 - Upgrade read-out electronics of the Time Projection Chambers (TPC) of the NA61/SHINE experiment
 - Increase recorded dataset to ~5x10⁸ central Pb-Pb collisions

Iceland Liechtenstein Norway grants

Charmed hadrons production in the SPS energy range

- Open charm production was always a sought after measurement, but always plagued by large uncertainties, both experimental and theoretical
 - No measurements in the SPS range in pp or A+A collisions

Charmed hadrons production in the SPS energy range

- Total cc production cross-section important not just by itself, but also as a reference in charmonium suppression studies
 - Anomalous J/ψ suppression in central Pb-Pb at top SPS energy was reported wrt Drell-Yan production

How is charm produced?

- Test case for Quantum Chromodynamics (QCD)
 - $m_c >> \Lambda_{QCD} \rightarrow perturbative calculation$
 - Assume factorization of the partonic PDFs and short distance matrix elements
 - Two main theoretical approaches: FONLL, GM-VFNS
- Hadronization of charm quarks (non-perturbative) is done using fragmentation functions

How is charm produced?

- Experimentally open charm hadron production is measured via
 - Exclusive hadronic decay channels (e.g., $D^0 \rightarrow K^+ + \pi^-$)
 - Indirectly via detection of leptons from semi-leptonic decays
- Open charm hadrons are long lived \rightarrow exploit in analysis by reconstructing displaced secondary vertices using high spatial resolution detectors (e.g. SAVD in NA61, ITS in ALICE, etc.)

Charm production in pp collisions at RHIC

 Heavy quark production in pp collisions measured via D-mesons or heavy flavor electrons relatively well explained by pQCD calculations (FONLL)

D-mesons in pp collisions at LHC

- D⁰ and D⁺ yields measured down to low p_T by ALICE (p_T= 0 for D⁰)
- FONLL calculations tend to underestimate the data
- GM-VFNS overestimate + diverges towards $p_T=0$
- Theoretical uncertainties due to the factorization and renormalization scales

D-hadron correlations at LHC

ALICE, arxiv1910.14403

 D-meson hadron correlations well described by Monte-Carlo generators in pp collisions

Dead-cone effect in pp collisions

• The dead-cone effect: $\omega \frac{dI}{d \omega} \propto \left(1 + \left(\frac{m_Q}{E_Q}\right)^2 \frac{1}{\theta^2}\right)^{-2}$

Dokshitzer and Kharzeev 2001

- Radiation (both in vacuum and medium) is suppressed inside a cone θ<m/E
- D-tagged jets have less splittings at small angles wrt inclusive jets
- Effect increases for lower energy jets

What about charm baryons ?

- Charm baryons thought to account for only a small fraction of the total cc cross-section (based on measurements from electron colliders)
- Sizable charm baryon/meson ratio (Λ_c and Ξ_c) observed by ALICE in pp and p-Pb collisions
- Non-negligible effects in the estimation of total $c\overline{c}$ cross-section

proton – nucleus collisions

Eskola et al., EPJC77 (2017) 163

- p-A collisions : probe the so-called Cold Nuclear Matter (CNM) effects
- Modification of the parton PDFs in nuclear environment
 - Shadowing, anti-shadowing, EMC effect
 - Gluon saturation (Color Glass Condensate)
- Multiple scatterings of partons
 - Parton energy loss
 - k_{τ} broadening (aka Cronin effect)
- Large theoretical uncertainties !

Heavy flavor electrons in d-Au at RHIC

PHENIX

- RHIC (heavy flavor leptons):
 - "central" d-Au collisions: rapidity and p_{τ} dependent suppression
 - "peripheral" d-Au: consistent with no effect

Heavy quark production in p-Pb at LHC

- Both heavy flavor electrons and D-mesons are compatible with none or moderate nuclear modifications at low p_{τ}
- Large nuclear effects excluded by the data

Charm production in A+A collisions

- pQCD initial production (+ possible CNM effects)
- $\tau_0 < 0.1 \text{ fm/c} << \tau_{QGP}$: probes all collision stages
- $m_c >> T_{RHIC,LHC}$: negligible thermal production
- Long thermalization time wrt light quarks/gluons
 - Carry more information on their evolution
- Strongly affected by the QGP phase
 - Collisional and radiative energy loss
 - Sensitive to the transport coefficient of QCD matter, D_s(T)
- Modification of the fragmentation to hadrons sensitive to the fireball chemical properties

Charm production in A+A collisions

- Charm production and transport modeling in AA collisions is done in several approaches
 - pQCD or pQCD-inspired calculations of radiative and collisional energy loss: Gossiaux et al. (MC@sHQ), Beraudo et al. (POWLANG), Djordjevic et al., Vitev et al., Uphoff et al. (BAMPS)
 - In-medium formation and dissociation of heavy-flavor hadrons: Vitev et al.
 - Transport coefficients calculations using the T-matrix approach with nonperturbative potential extracted from lattice QCD (Rapp et al. - TAMU) or via ab initio lattice-QCD calculations (POWLANG)
 - Heavy quark energy loss modeling integrated into the PHSD transport theory
 - AdS/CFT approach for the calculation of transport coefficients: Horowitz et al.
- Besides the charm interaction with the hot medium, all the above models incorporate various assumptions on
 - the initial production of heavy flavor,
 - space-time description of the QGP evolution,
 - Hadronization and interactions with hadronic matter

D-meson nuclear modification at RHIC

- Strong D-meson suppression, especially in central collisions
 - Consistent with lage in-medium energy loss
- Large D-meson elliptic flow
 - suggestive of charm thermalizing in the QGP

D-meson nuclear modification at LHC

- High-pT: strong charm nuclear modification (factor of ~5 suppression)
- Low-pT: little or no suppression
 - Charm quark conservation ?
- Consistent description of both nuclear modification factor and elliptic flow is problematic for most models

Flavor dependence of hot medium effects (LHC)

- Hint of flavor/mass dependent energy loss in the intermediate $p_{\!_{\rm T}}$ region:
 - $\Delta E(q,g) > \Delta E(c) > \Delta E(b)$: consistent with the dead cone effect
- Similar mass hierarchy observed for elliptic flow for pT<6-7 GeV
 - $v2(q,g) > v2(D) > v2(J/\psi) > v2(b \rightarrow e) > v2(Y)$

I.Arsene | NA61/SHINE Colaboration meeting

Hadronization effects (strange D-mesons)

- Strange to non-strange D-mesons ratio larger in A+A wrt expectations from ee or pp collisions
 - Effect observed both at RHIC and LHC
 - Hadronization of charm affected by the strange-quark rich medium

Hadronization effects (baryon/meson) - STAR

- Significantly larger Λ_{I}/D^{0} ratio observed in Au+Au collisions wrt pp collisions
- Λ_{c}/D ratio comparable to light flavor baryon / meson ratios
- Enhancement seems more pronounced in central collisions
- Consistent with charm quark hadronization via coalescence

Hadronization effects (baryon/meson) - STAR

• Transport model calculations (TAMU and Tsingua) also seem to reproduce the data

Hadronization effects (baryon/meson) - ALICE

• Λ_{c}/D^{0} ratio larger in Pb-Pb than in pp collisions also at LHC energies

Charm production in AA collisions the SPS

- Production of charm in AA collisions in the SPS energy range is experimentally unknown
- Theoretical predictions vary by 2 orders of magnitude \rightarrow good opportunity for NA61 to make strong constrains
- Proposed as a signal of the onset of deconfinement
- More details in Pawel's presentation

Summary and conclusions

- Charm (and bottom) hadron production is one of the most active area of studies in AA collisions at the LHC and RHIC energies
- Strong nuclear suppression observed at intermediate and high pT at the LHC consistent with large in-medium energy loss effects
- Large elliptic flow suggests possible cham-quark thermalization in the QGP
- Observations of enhanced production of D_s and charm baryons (Λ_c, Ξ_c) wrt expectations from ee collisions
 - Sizable contributions to total $c\overline{c}$ cross-section, largely unexpected
 - Approximation of cc cross-section with the light D-mesons yields not good enough
 - Should be tested even at SPS energies
- Open charm production physics in AA collisions features rich phenomena (some not discussed here)
 - Its time for NA61/SHINE to join :)

Backup

The nuclear modification factor

N_{ch} p-Pb: *ALICE PRL110(2013)082302* N_{ch} Pb-Pb: *ALICE, Phys.Lett.B720 (2013)52* N_{ch} Pb-Pb: *CMS, EPJC (2012) 72* γ: *CMS, PLB 710 (2012) 256* W[±], *CMS, PLB715 (2012) 66* Z⁰, *CMS, PRL106 (2011) 212301*

$$R_{AA} = \frac{1}{N_{coll}} \times \frac{Y_{AA}}{Y_{pp}}$$

 N_{coll} : the number of binary nucleon-nucleon collisions Y_{AA} : yield in AA collisions

- Y_{pp} : yield in pp collisions
- > Superposition of NN collisions $\rightarrow R_{AA} = 1$
- > Suppression $\rightarrow R_{AA} < 1$
- > Enhancement $\rightarrow R_{AA} > 1$
- Weakly interacting particles are not affected by the QGP
 - > Photons, W^{\pm} and Z^{0} bosons R_{AA} are

compatible with 1 I.Arsene | NA61/SHINE Colaboration meeting

Heavy quarkonia in the QGP

- Vacuum potential: $V_{total} = (-q) \frac{q}{4\pi r} + kr$
- In a deconfined medium
 - string tension disappears
 - Coulomb potential is screened (Debye)
- The quark-antiquark potential becomes a Yukawa-like short range potential

$$V_{medium}(\mathbf{r}) = \frac{q}{4\pi} \frac{e^{-r/\lambda_D}}{r}$$

$$\lambda_D \simeq \frac{1}{T}$$
 - Debye screening length

• Quarkonium states will be melted if $r > \lambda_{D}$

Matsui and Satz, PLB178 (1986) 416

