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Abstract. This article presents a simplified version of Ross’s
proof of Lyapunov’s convexity theorem.

Lyapunov’s convexity theorem says that the range of a finite atomless
vector measure is convex. Among many proofs of this theorem, for
example [1], [2] and [4], Ross’s proof [3] is considered an elementary one.
We think Ross’s proof could be further simplified by a simple geometric
observation. It is known ([3]) that proving Lyapunov’s theorem can
be easily reduced to the following condition for an atomless measure
µ = (µ1, . . . , µn) : A → [0, ∞).

(∗) For all E ∈ A there exists F ⊆ E and r ∈ (0, 1) such that
µ(F ) = rµ(E).

While it is necessary to assume that the domain of a measure is a σ-
algebra, condition (∗) leads naturally to measures defined on λ-systems.
Throughout this paper, a measure is a σ-additive non-negative function
on some λ-system, as it is appropriate for an inductive proof.

Lemma 1. If µ, ν : B → R are finite measures, ν is atomless and
µ ≪ ν, then for any ε > 0 and B ∈ B with µ(B) > 0, there exists
A ∈ B, A ⊆ B such that 0 < µ(A) < ε, i.e. µ is atomless.

Proof. Suppose there exists ε > 0 such that for every A ∈ A, A ⊆ B we
have µ(A) /∈ (0, ε). Define C0 := B. Then fix n ∈ N and assume there
exist sets Cn ⊆ . . . ⊆ C0 such that ν(Ci) = 1

2i ν(B) and µ(Ci) ⩾ ε for
all i ⩽ n. Since ν is atomless, there exists a partition Cn = C ∪C ′ such
that ν(C) = ν(C ′) = 1

2ν(Cn). One of the sets C and C ′ has positive
measure µ and we define Cn+1 to be this set. Finally, µ(⋂

n Cn) ⩾ ε
and ν(⋂

n Cn) = 0, which contradicts the assumption µ ≪ ν. □

Lemma 2. Let µ, ν : B → R be finite measures and ε ⩾ 0. Then for
any B ∈ B there exists A ⊆ B, A ∈ B such that ν(A) − µ(A) ⩽ ε
and A is maximal with respect to this inequality and measure ν, i.e.
for any A′ ∈ B such that A ⊆ A′ ⊆ B and ν(A′ \ A) > 0 we have
ν(A′) − µ(A′) > ε.
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Proof. Consider the family

R = {A ∈ B : A ⊆ B and ν(A) − µ(A) ⩽ ε}

partially ordered by the relation

A < A′ ⇐⇒ A ⊆ A′ and ν(A) < ν(A′).

Suppose that a non-empty chain L ⊆ R has no maximal element and
let Cn ∈ L be such that ν(Cn) > sup{ν(A) : A ∈ L} − 1

n
and ν(Cn) >

ν(Cn−1). Then ⋃
n Cn is an upper bound for L. Indeed, otherwise

there is D ∈ L such that D ̸< ⋃
n Cn, hence ⋃

n Cn ⊆ D and ν(D) =
sup{ν(A) : A ∈ L}; a contradiction. By Zorn’s lemma there exists a
maximal element in R. □

Theorem 1. If µ1, . . . , µn : A → [0, ∞) are finite and atomless mea-
sures, then the vector measure (µ1, . . . , µn) satisfies condition (∗).

Proof. We start with an additional assumption µ1 ≪ . . . ≪ µn, which
can be made without loss of generality. To see this, consider µ′ =
(µ1, µ1 +µ2, . . . , µ1 + . . .+µn) instead of µ. The proof will be inductive
with respect to n. For n = 1 condition (∗) means that a measure is
atomless.

Fix n ∈ N and assume that (∗) holds for any n measures as in the
assumptions. Let µ = (µ1, . . . , µn+1), where µi : A → R are finite,
atomless measures and µ1 ≪ . . . ≪ µn+1. Let ν = (µ2, . . . , µn+1). Fix
E ∈ A such that ν(E) ̸= 0 ∈ Rn. Consider the family

B =
{
B ⊆ E, B ∈ A : ∃t∈[0,1]ν(B) = tν(E)

}
,

which is a λ-system on E. There exists a measure ν∗ : B → R such
that ν(B) = ν∗(B)ν(E) for all B ∈ B. By induction hypothesis ν∗ is
an atomless measure, whose range is [0, 1] and also µ1|B ≪ ν∗. We can
assume that µ1(E) = 1. If there exists a set B ∈ B such that

ν∗(B) = µ1(B) and 0 < ν∗(B) < 1,

then condition (∗) is satisfied with r = ν∗(B). In search for contradic-
tion assume otherwise. Then there exist disjoint sets P, Q ∈ B such
that ν∗(P ) = ν∗(Q) = 1

3 and µ1(P ) > 1
3 , µ1(Q) < 1

3 . By Lemma 2 with
ε = µ1(P ) − ν∗(P ) there exists Q′ ⊆ Q such that

ν∗(Q′) − µ1(Q′) ⩽ µ1(P ) − ν∗(P ),

and Q′ is maximal with respect to this inequality and measure ν∗, in
the sense of Lemma 2. Again by Lemma 2 with ε = ν∗(Q) − µ1(Q)
there exists P ′ ⊆ P such that

µ1(P ′) − ν∗(P ′) ⩽ ν∗(Q) − µ1(Q),

and P ′ is maximal with respect to this inequality and measure µ1.
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Case 1. µ1(P ∪ Q) < ν∗(P ∪ Q) = 2
3 . Then ν∗(Q \ Q′) > 0, because

otherwise
2
3 = ν∗(P ∪ Q) = ν∗(P ∪ Q′) < µ1(P ∪ Q′) ⩽ µ1(P ∪ Q) < 2

3 .

Since ν∗ is atomless, there exists C ∈ B, C ⊆ Q \ Q′ such that
0 < ν∗(C) < µ1(P ∪ Q′) − ν∗(P ∪ Q′).

Then Q′ ∪ C contradicts the maximality of Q′.
Case 2. µ1(P ∪ Q) > ν∗(P ∪ Q) = 2

3 . Then µ1(P \ P ′) > 0, because
otherwise

2
3 < µ1(P ∪ Q) = µ1(P ′ ∪ Q) < ν∗(P ′ ∪ Q) ⩽ ν∗(P ∪ Q) = 2

3 .

By Lemma 1 there exists C ∈ B, C ⊆ P \ P ′ such that
0 < µ1(C) < µ1(P ∪ Q′) − ν∗(P ∪ Q′).

Then P ′ ∪ C contradicts the maximality of P ′. □

A geometric interpretation. Consider the following coordinate sys-
tem, where the y-axis represents the measure µ1|B and the x-axis rep-
resents the measure ν∗. Let m be the measure (µ1|B, ν∗). The area
above the line y = x is open, hence the maximality of Q′ implies that
the point m(P ∪ Q′) should lie on the line y = x.
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