Abstract

This dissertation presents functional inequalities connected to Sugeno inte-
gral and its applications. We focus on the Hermite-Hadmard inquality. So
we start with the computer approach to solve the general form of Hermite-
Hadamard inequality and to the best of our knowledge, this is the first work
where a computer program may be used to solve functional inequalities.
We then study the extension of Hermite-Hadamard inequality for the case of
quasi-arithmetically convex functions and it’s Sugeno intergal counter part
which provides a generalization and it acts as a generator for other means,
in particular linear, harmonic, geometric among others and this is followed
by the study of the Lagrangian mean ( non-arithmetic mean) which leads to
the characterization of the logarithmic mean.

Then, on upper Hermite Hadamard inequalities for geometric-convex and
log-convex functions. This is a correction on a result by J. Sandor which is
contained in article [55] where author claims, among others, that theorem
6.1 holds (cf. Theorem 2.5 in [55]).

Finally, we present the applications of fuzzy measure theory where we first
propose an iterative approach to obtain the optimal value for X\ without
having to solve complex polynomial functions. And then application of non-
additive fuzzy measures as an alternative to traditional risk metrics like stan-
dard deviation. So we consider a Markovitz-like portfolio selection problem,
where we use a fuzzy measure (a transfomation of Sugeno lambda-measure)
and a d-Choquet integral to form efficient frontier. Due to the limitations
of Modern Portfolio Theory (MPT) and its reliance on normal distribution
assumptions, we introduce non-additive fuzzy measure, which do not assume
specific probability distributions. This approach accommodates imprecision
and uncertainty in financial markets, providing a more comprehensive under-
standing of portfolio risk. By considering diversification and asset character-
istic dependencies, non-additive fuzzy measures offer a promising avenue for
more accurate risk analysis and informed investment decisions.

Keywords: Functional equations, Hermite-Hadamard inequalities, Fuzzy
measure, Sugeno integral, convex(concave) functions, Risk management,
Modern Portfolio Theory, stochastic orderings, Computer assisted methods,
Python. '
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