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1 Name

Hanna Wojewódka-�ci¡»ko

2 Diplomas and degrees

2015

Doctor of Mathematical Sciences in the �eld of mathematics
(doctoral thesis defended with distinction)

The degree was conferred by a resolution of the Council of the Faculty of Mathe-
matics, Physics and Informatics of the University of Gda«sk, based on the doctoral
dissertation entitled Ergodyczne wªasno±ci pewnych stochastycznych ukªadów dy-
namicznych (Ergodic properties of certain stochastic dynamical systems), prepared
under the supervision of prof. dr hab. Tomasz Jakub Szarek.

2011

Master of Mathematics

The title was awarded at the Faculty of Mathematics, Physics and Informatics of the
University of Gda«sk, based on the thesis entitled Modele matematyki �nansowej
o dynamicznej strukturze czasowej (Models of �nancial mathematics with a dynamic
time structure), written under the supervision of dr hab. Henryk Leszczy«ski,
prof. UG.

3 Information on employment in research institutes or facul-
ties/departments

2016�Present

Assistant Professor (Adiunkt)
at the Institute of Mathematics, University of Silesia in Katowice

(Full-time position)

(1 October 2021 � 30 June 2023: Unpaid leave; 2 June 2020 � 31 May 2021: Ma-
ternity and parental leaves; 2 March 2020 � 1 June 2020: Inability to work)

2019�2023

Postdoctoral Research Fellow (Adiunkt)
Institute of Theoretical and Applied Informatics, Polish Academy of Sciences

(1 December 2019 � 30 September 2021: 50% position; 1 October 2021 � 30 June
2023: Full-time position; 1 July 2023 � 31 October 2023: 50% position)

(2 June 2020 � 31 May 2021: Maternity and parental leaves; 2 March 2020 � 1 June
2020: Inability to work)

2015�2016

Lecturer
at the Faculty of Applied Physics and Mathematics, Gda«sk University of Technol-
ogy

(25% position)

2



2015�2016

Postdoctoral Research Fellow (Adiunkt)
at the Institute of Theoretical Physics and Astrophysics, University of Gda«sk,
with a delegation to work at the National Quantum Information Centre in Gda«sk

(1 October 2015 � 16 December 2015: 50% position; 17 December 2015 � 30 Septem-
ber 2016: 75% position)

2013�2015

Assistant
at the Institute of Theoretical Physics and Astrophysics, University of Gda«sk,
with a delegation to work at the National Quantum Information Centre in Gda«sk

(50% position)

4 Description of the achievements, set out in art. 219 para 1.
point 2 of the Act (and other, thematically related, results of
the applicant)

Title of the scienti�c achievement

Ergodic description of certain classes of non-stationary Markov processes

evolving in Polish spaces

4.1 List of publications constituting the scienti�c achievement

[H1] R. Kukulski, H. Wojewódka-�ci¡»ko, The e-property of asymptotically stable Markov-
Feller operators, Colloq. Math. 165 (2021), 269�283, DOI 10.4064/cm8165-6-2020.

[H2] D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko, Ergodic properties of some piecewise
deterministic Markov process with application to gene expression modelling, Stoch. Proc.
Appl. 130 (2020), no. 5, 2851�2885, DOI 10.1016/j.spa.2019.08.006.

[H3] D. Czapla, S.C. Hille, K. Horbacz, H. Wojewódka-�ci¡»ko, Continuous dependence of an
invariant measure on the jump rate of a piecewise-deterministic Markov process, Math.
Biosci. Eng. 17 (2020), no. 2, 1059�1073, DOI 10.3934/mbe.2020056.

[H4] D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko, A useful version of the central limit
theorem for a general class of Markov chains, J. Math. Anal. Appl. 484 (2020), no. 1,
123725, DOI 10.1016/j.jmaa.2019.123725.

[H5] D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko, The Strassen invariance principle for
certain non-stationary Markov-Feller chains, Asymptot. Anal. 121 (2021), no. 1, 1�34,
DOI 10.3233/ ASY-191592.

[H6] K. Czudek, T. Szarek, H. Wojewódka-�ci¡»ko, The law of the iterated logarithm for
random interval homeomorphisms, Isr. J. Math. 246 (2021), 47�53,
DOI 10.1007/s11856-021-2235-9.
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4.2 List of other scienti�c articles related to the topic of the scienti�c
achievement

Latest result (paper under review)

[N1] R. Kukulski, H. Wojewódka-�ci¡»ko, The e-property of asymptotically stable Markov
semigroups, under review in Results Math., arXiv:2211.16424 [math.PR] (2022),
DOI 10.48550/arXiv.2211.16424.

Articles describing ergodic properties of Markov processes with values in Polish
spaces, published after the conferment of the PhD degree

[E1] D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko, The central limit theorem for Markov
processes that are exponentially ergodic in the bounded-Lipschitz norm, Qual. Theory
Dyn. Syst. 23 (2023), no. 7, DOI 10.1007/s12346-023-00862-4.

[E2] D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko, Exponential ergodicity in the bounded-
Lipschitz distance for some piecewise-deterministic Markov processes with random switch-
ing between �ows, Nonlinear Anal. 213 (2022), no. 112678,
DOI 10.1016/j.na.2021.112678.

[E3] D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko, On absolute continuity of invariant mea-
sures associated with a piecewise-deterministic Markov process with random switching
between �ows, Nonlinear Anal. 13 (2021), no. 112522, DOI 10.1016/j.na.2021.112522.

[E4] D. Czapla, S.C. Hille, K. Horbacz, H. Wojewódka-�ci¡»ko, The law of the iterated log-
arithm for a piecewise deterministic Markov process assured by the properties of the
Markov chain given by its post-jump locations, Stoch. Anal. Appl. 39 (2021), no. 2,
357�379, DOI 10.1080/07362994.2020.1798252.

The results on ergodic properties of certain Markov dynamical systems, covering,
e.g., a simple cell division model, obtained during doctoral studies

[D1] S.C. Hille, K. Horbacz, T. Szarek, H. Wojewódka, Law of the iterated logarithm for some
Markov operators, Asymptot. Anal. 97 (2016), no. 1�2, 91�112,
DOI 10.3233/ASY-151344.

[D2] S.C. Hille, K. Horbacz, T. Szarek, H. Wojewódka, Limit theorems for some Markov
chains, J. Math. Anal. Appl. 443 (2016), no. 1, 385�408,
DOI 10.1016/j.jmaa.2016.05.022.

[D3] H. Wojewódka, Exponential rate of convergence for some Markov operators, Statist.
Probab. Lett. 83 (2013), no. 10, 2337�2347, DOI 10.1016/j.spl.2013.05.035.
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4.3 Description of the achievements

4.3.1 Introduction

Markov operators acting on measures and families of these operators forming
semigroups (the so-called Markov semigroups) derive naturally from Markov pro-

cesses (discrete-time and continuous-time, respectively). They are employed to describe the
dynamics of the distributions of these processes.

Random Markov dynamical systems, characterized either by chains or continuous-time
processes, in particular piecewise deterministic Markov processes (PDMPs), have numerous
applications, among others, in the theory of iterated function systems (IFSs) or (semi)fractals
(see, e.g., [BD85, BDEG88, Las95, LM98, DF99, KS20]), theory of partial di�erential equations
(see [Hai02, LS06, HM08, KPS10, Sza13], just to name a few, and also [SSU10, KPS13, KS14],
which all refer to passive tracer models), storage modelling [BKKP05], internet tra�c [GR09]
or biology � as stochastic models describing the dynamics of molecular biology, such as gene
expression and autoregulation [CDMR12, MTKY13, HHS16], cell division [LM99], excitable
membranes [RTW12] or population dynamics [AHVG15, BL16, RTK17].

So far my research interests have focused mainly on certain ergodic properties

of Markov dynamical systems (including the existence and uniqueness of invari-
ant probability measures, equicontinuity, asymptotic stability, limit theorems and
others). I have contributed to the development of the theory, especially in the
context of considering general metric state spaces � speci�cally Polish (that is,
complete and separable) metric state spaces, which are not necessarily locally
compact. Notably, these results apply to in�nite-dimensional systems.

The transition from (locally) compact spaces to Polish spaces is not a straightforward
generalization (note that balls in such spaces do not need to be compact). As emphasized
by prominent mathematicians such as M. Hairer [Hai02, HM08, CH15] or A. Lasota [Las95],
just to name a few, it rather represents a signi�cant qualitative advance. In Polish spaces,
most of the methods developed for locally compact and σ-compact spaces become
impossible to apply, which makes it necessary to develop new concepts.

Additionally, such a research is strongly motivated by speci�c applications (see, e.g.,
[HHS16], which provides an example from molecular biology indicating the importance of con-
sidering a non-locally compact space as the state space in the abstract framework; [EHM15],
where mild solutions to a measure-valued mass evolution problem with �ux boundary condi-
tions are established; or [Pic19], elaborating on measure di�erential equations).

Below we present a concise summary of the results of the series Ergodic description of
certain classes of non-stationary Markov processes evolving in Polish spaces.

[H1] The relations between asymptotic stability and the e-property of Markov operators acting
on measures de�ned on general (Polish) metric spaces are studied. While usually much
attention is paid to asymptotic stability (and the e-property has been for years veri�ed
only to establish it), it should be noted that the e-property itself is also important
as it, e.g., ensures that numerical errors in simulations are negligible. Here, we prove
that any asymptotically stable Markov�Feller operator has the e-property everywhere
outside a set of �rst category. We also provide an example showing that this result is
tight. Moreover, an equivalent criterion for the e-property is proposed.
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[H2] We investigate a PDMP with a Polish state space, whose deterministic behaviour between
random jumps is governed by a �nite number of semi�ows, and any state right after the
jump is attained by a randomly selected continuous transformation. It is assumed that
the jumps appear at random moments, which coincide with the jump times of a Poisson
process with intensity λ. We provide tractable conditions ensuring a form of geometric
ergodicity and the strong law of large numbers (SLLN) for the chain given by the post-
jump locations. Further, we establish a one-to-one correspondence between invariant
probability measures of the chain and those of the PDMP. These results enable us to
derive the SLLN for the latter. The studied dynamical system is inspired by certain
models of gene expression and autoregulation.

[H3] We study the PDMP introduced in [H2] (albeit with just one semi�ow, determining the
behavior of the system between random jumps). The aim of the paper is to prove the
continuous dependence of the unique invariant probability measure of this PDMP on the
jump rate λ. While limit theorems provide the theoretical foundation for successful ap-
proximation of the invariant measures, this result asserts the stability of this procedure,
at least locally in parameter space. Moreover, it con�rms the suitability of using this
model as a tool to analyse the stochastic dynamics of gene expression in prokaryotes.

[H4] In the paper we propose certain conditions, relatively easy to verify, which ensure the
central limit theorem (CLT) for some general class of non-stationary Markov-Feller chains
(with values in Polish metric spaces). This class may be brie�y speci�ed by the follow-
ing two properties: �rstly � the transition operator of the chain under consideration
enjoys a non-linear Lyapunov-type condition, and secondly � there exists an appropriate
Markovian coupling whose transition probability function can be decomposed into two
parts, one of which is contractive and dominant in some sense. The given conditions
guarantee both the geometric ergodicity (in the Fortet-Mourier metric) and the CLT. To
justify the usefulness of our criterion, we further verify it for a particular discrete-time
Markov dynamical system (introduced in [H2]).

[H5] We propose certain conditions implying the functional law of the iterated logarithm (LIL),
the so-called Strassen invariance principle for the LIL, for some general class of non-
stationary Markov-Feller chains (speci�ed as above) with values in Polish metric spaces.
In the �nal part of the paper we also present an example application of our main theorem
to the speci�c mathematical model describing stochastic dynamics of gene expression
(introduced in [H2]).

[H6] We prove the LIL for non-stationary Markov chains generated by IFSs consisting of
orientation-preserving homeomorphisms of the interval. The result enriches the ergodic
decription of this class of Markov chains, previously studied by K. Czudek and T. Szarek
in terms of ergodicity and the CLT [Isr. J. Math., 239:75�291, 2012]. Note, however, that
the chains considered here may not converge exponentially to their equilibria. Therefore,
the techniques developed in [H5] (or any similar results) do not apply.

A more detailed discussion of these results (as well as those presented in the articles [N1]
and [E1]�[E4], all thematically related to the series Ergodic description of certain classes
of non-stationary Markov processes evolving in Polish spaces), which includes the historical
background of the research, references to other scienti�c works, a description of the proof
techniques used and the presentation of the remaining open questions (some of which we plan
to address in the future), can be found in the next section.
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4.3.2 Overview of the results

A brief historical background of this part of research on the asymptotics
of Markov processes that uses equicontinuity properties

The asymptotic behavior of Markov processes, including the existence and uniqueness of their
stationary distributions, as well as the weak convergence of their laws to unique stationar-
ies that is independent of their initial distributions (asymptotic stability), has been widely
studied over the years. In this connection, various techniques, in particular those referring
to equicontinuity properties of families of Markov operators, have been introduced (see, e.g.,
[Ste94, LS06, Wor10, SW11, Cza12, CH14, WW18], where certain ergodic properties of Markov
chains are established, or [SSU10, KS11], where the asymptotic behavior of continuous-time
Markov processes is studied).

Initially, these type of methods have been developed for Markov processes evolving in com-
pact metric spaces (cf. [Jam64]) or locally compact Hausdor� topological spaces (cf. [MT93b]).
Further, the so-called lower-bound technique for equicontinuous families of Markov operators
has been introduced to prove results for processes evolving in general (Polish) metric spaces
(see, e.g., [LS06, Sza13]; cf. [Sza03, Sza06], where one the �rst results concerning asymptotics
of Markov operators evolving in Polish metric spaces are obtained). In the literature the con-
cepts like the e-property [SW11, Cza12, CH14], the eventual e-property [Wor10, Cza18], the
Cesáro e-property [Wor10] or even uniform equicontinuity on balls [HHS16] have been con-
sidered. Recently, by utilizing a Schur-like property for measures, the authors of [HSWZ21]
have also established a rigorous connection between the concepts of equicontinuity for Markov
operators acting on measures and their dual operators acting on functions.

Relations between asymptotic satability and the e-property

Let (E, ρ) be a given Polish metric space, and let R be a su�ciently large subset of the set
Cb(E) consisting of all real-valued bounded continuous functions on E. We say that a regular
E-valued Markov operator P (with the dual operator denoted by the same symbol) has the
e-property in R if the family {Pnf}n∈N0 of iterates is equicontinuous for all f ∈ R, that is, for
all f ∈ R

lim
x→z

sup
n∈N0

|Pnf(x)− Pnf(z)| = 0 for every z ∈ E.

Similarly, a regular Markov semigroup {P (t)}t∈R+ has the e-property in R if the family
{P (t)f}t∈R+ is equicontinuous for all f ∈ R. In many papers (see [KPS10, Wor10, SW11,
HSZ17, Cza18], just to name a few), R is assumed to be the set Lipb(E) of all bounded
Lipschitz functions, although it can also be the set of bounded continuous functions with
bounded (or compact) support (cf., e.g., [MT93b, Ste94, Cza12]), or even the entire set of
Cb(E) (as in our papers [H1] and [N1]). De�nitions of the e-property for di�erent sets R are
generally non-equivalent. However, assuming that a regular Markov operator P is asymptoti-
cally stable, we can use some of these notions interchangebly (see Remark 2.1 and Lemma 3.4
in [H1]). The comparison of the e-property notions for di�erent sets R in the case of Markov
semigroups is presented in Appendix II in [N1]. In that case, not only asymptotic stability of
{P (t)}t∈R+ but also its stochastic continuity at zero (de�ned as in [Dyn65, Dyn00, KW12])
are needed to make some of these notions equivalent.

Knowing the criteria on asymptotic stability of Markov operators with the e-property,
one may ask about a reverse relation, namely: Does asymptotic stability immediately imply
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the e-property?. The answer is negative and it is given in [HSZ17]. More precisely, the au-
thors of [HSZ17] have provided examples of Markov-Feller operators which are asymptotically
stable, but which do not have the e-property. Simultaneously, they have proved that any
asymptotically stable Markov-Feller operator with an invariant probability measure µ∗ such
that the interior of its support is non-empty (Int(supp(µ∗)) ̸= ∅) satis�es the e-property (see
[HSZ17, Theorem 2.3]).

In [H1], we generalize [HSZ17, Theorem 2.3], i.e., we prove that any asymptot- Summary
of [H1].ically stable Markov�Feller operator has the e-property o� a set of �rst category

(see Theorem 3.1 in [H1]; cf. Section 4.3.3 of this Summary). Moreover, in Theorem 3.5 in [H1],
we propose an equivalent condition for the e-property of asymptotically stable Markov�Feller
operators. Namely, we prove that an asymptotically stable Markov�Feller operator
has the e-property if and only if it has the e-property at least at one point of the
support of its invariant probability measure. These two results then naturally imply
[HSZ17, Theorem 2.3] (cf. Section 4.3.3 of this Summary). In fact, they imply even more,
because thanks to Lemma 3.4 in [H1] we know that the assumptions made lead to e-property
in Cb(E) (the assertion of [HSZ17, Theorem 2.3] was originally formulated for the e-property
in Lipb(E), which is less general).

We also provide two examples in [H1]. In the �rst of them, we de�ne an asymptoti-
cally stable Markov�Feller operator such that the set of points at which it fails
the e-property is dense. The example thus shows that the main result of [H1] is tight. In
the second example, we construct an asymptotically stable Markov�Feller operator
for which the set of points without the e-property is uncountable. For details see
Section 4 in [H1].

The issue of the relationship between the e-property and asymptotic stability is also ad- Summary
of [N1].dressed in our very last paper [N1], where we answer the following question: When does an

asymptotically stable Markov semigroup have the e-property?. One of the main theorems
of that paper (Theorem 1) is an equivalent of [HSZ17, Theorem 2.3] for Markov
semigroups, and so its proof is based on certain ideas derived from [HSZ17]. The di�erence
is that conditions guaranteeing the e-property for a single asymptotically stable Markov op-
erator P (that is, the Feller property and the non-emptiness of the interior of the support of
its invariant probability measure) are insu�cient to guarantee it for an asymptotically stable
Markov semigroup {P (t)}t∈R+ (counter-examples are provided in Section 2.2 of [N1]). Un-
der these conditions, only the eventual e-property in Cb(E), that is, the e-property in Cb(E)
that holds from a certain point in time, rather than over the entire time interval t ∈ R+

(for a precise de�nition see [Cza18, Eq. (5.11)] or Section 1.3 in [N1]), can be established.
To prove the e-property, an additional assumption of strong stochastic continuity (de�ned
as in [EK86, p. 6]) has to be made. More precisely, we demonstrate that any Markov
semigroup that is strongly stochastically continuous, and possesses the eventual
e-property, also has the e-property (Theorem 2 in [N1]). Interestingly, the assumption
cannot be weakened. Example 2 in [N1] illustrates that stochastic continuity in its
weaker form, that is, with pointwise convergence in the place of convergence in
the supremum norm, does not necessarily imply the desired assertion, unless the
underlying phase space is compact (cf. Appendix I in [N1]). As a corrolary of the two
above mentioned theorems (i.e., Theorems 1 and 2 in [N1]), we obtain that an asymptoti-
cally stable Markov-Feller semigroup possesses the e-property if it is also strongly
stochastically continuous and the interior of the support of its invariant probability
measure is non-empty (Corollary 1 in [N1]).

A slightly more general result, assuming `eventual continuity' instead of asymptotic stabil-
ity, was later established in [LL23] (although there the authors adhere to the stronger de�nition
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of the e-property, namely the e-property in Lipb(E)). In contrast, we focus on providing a jus-
ti�cation for the tightness of the results presented in this [N1], while also addressing the �fth
open question stated in [LL23]. This question pertains to the possibility of weakening the as-
sumption of strong stochastic continuity of Markov-Feller semigroups to stochastic continuity
while still preserving the equivalence between their e-property and eventual e-property.

Finally, it is worth noting that stochastic continuity is not a highly restrictive require-
ment when working with Markov semigroups {P (t)}t∈R+ . It is assumed, for instance, to
ensure joint measurability of a Markov semigroup (as stated in [Wor10, Proposition 3.4.5]) or
to uniquely characterize a Markov-Feller semigroup through its (weak) in�nitesimal operator
(see [Dyn65, Theorem 2.5]).

Asymptotic stability, especially if achieved with the exponential rate, is one of
the most desired ergodic properties of Markov processes, but it is the e-property
that, if additionally met, guarantees that certain numerical errors can be treated
as negligible in simulations (cf. also [CH14], where it is proven that an asymptotically
stable Markov-Feller operator converges to its stationary uniformly, provided that it satis�es
a form of equicontinuity condition). This indicates that theoretical results established
in [H1] and [N1] are important even from the point of view of applications.

Further research related to this topic should focus on replacing the assumption of the
non-emptiness of the interior of the support of the invariant probability measure of a given
Markov operator/semigroup with another condition that is less restrictive and hopefully easier
to verify, such as the assumption that the unique invariant probability measure is atomless.

Asymptotic coupling techniques

As it has already been mentioned in Section 4.3.2: A brief historical background of this part of
research on the asymptotics of Markov processes that uses equicontinuity properties, asymptotic
behaviour of Markov dynamical systems has been often examined using techniques that exploit
various equicontinuity properties. However, to prove ergodicity of a given random system and,
additionally, even estimate its rate, a quite di�erent concept, based on the application of
asymptotic coupling, can be applied. This modern approach has been introduced by M. Hairer
in his prominent paper [Hai02], inspired mainly by the article [Mat02] of J.C. Mattingly on
the 2nd Navier-Stokes equation. Further, the method has been succesfully developed for both
Markov operators, in particluar, those describing the evolution of IFSs (cf. [�11, Cza18, CK19,
KS20] or [D3], [H2]), and Markov semigroups, chracterizing, among others, PDMPs (see, e.g.,
[CH15] or [E2]), all evolving in general (Polish) metric spaces.

The underlying idea of all asymptotic coupling techniques can be brie�y described as
follows. For a given Markov chain {ϕn}n∈N0 with transition law P (note that, according to
the convention employed, e.g., in [MT93b, OLK12], the corresponding Markov operator acting
on measures, as well as its dual acting on functions, are also denoted by the same symbol P )

we consider two instances of it: one with initial point x0, denoted by {ϕ(1)n }n∈N0 , and the

other one with initial point y0, denoted by {ϕ(2)n }n∈N0 . The goal is to bring the trajectories

of {ϕ(1)n }n∈N0 and {ϕ(2)n }n∈N0 as close as possible by creating appropriate correlations between
these chains. Under some (fairly general) assumptions, this can be achieved by decomposing

the transition law of the coupled chain {(ϕ(1)n , ϕ
(2)
n )}n∈N0 , the so called Markovian coupling,

into two parts, one of which is constructive and dominant in some sense (details can be found,
e.g., in [H4]).
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In the research literature one can �nd the notion of a coupling time τcouple, which is the
random moment at which both copies of the Markov chain {ϕn}n∈N0 reach the same state for

the �rst time, i.e. τcouple = min{n ∈ N0 : ϕ
(1)
n = ϕ

(2)
n }. We know that if τcouple < ∞, then

the so-called successful coupling, making chains stay together all the time, can be constructed
(see, e.g., [MT93b, Lin02]). This is, however, not the case here, and thus, following M. Hairer
[Hai02], we couple asymptotically the whole trajectories of Markov chains, which cannot meet
at some �nite time (cf. [HM08], which provides an example of a Markov chain evolving in
an in�nite dimensional space, whose two copies, starting from di�erent initial points, induce
mutually singular measures).

Finally, it is worth mentioning that adaptation of asymptotic coupling techniques can serve
not only to establish exponential ergodicity but also limit theorems, including the SLLN (see
[HS16]), the CLT (see [D2], [Hor16], [H4]), and the LIL (see [D1], [H5], [E4]). In particular,
the articles [H4] and [H5], both based on a creative adaptation of asymptotic cou-
pling techniques, constitute an important contribution to the research on general
versions of limit theorems for Markov processes with Polish state spaces.

PDMPs driven by randomly switched semi�ows

Our initial motivation for the creative use of asymptotic coupling techniques was to prepare Summary
of the
articles
[D1]�[D3].

an ergodic description of a random dynamical system, which serves, among others, to describe
a simple model of cell division. This system has already been studied in terms of stability
by A. Lasota and M.C. Mackey in [LM99]. Following the ideas of M. Hairer [Hai02] (cf. also
[�11]), we estimated the convergence rate to the unique stationary distribution of
this system as geometric [D3], and subsequently established both the CLT [D2] and
the LIL [D1] (here, also referring to [MW00] and [HS73, BMS12], respectively). Simultane-
ously, R. Kapica and M. �l¦czka have adapted these techniques to establish their criterion
([KS20, Theorem 2.1]) on geometric ergodicity for Markov chains evolving in Polish spaces,
with a particular application to random iterations with place dependant probabilities. All of
the aforementioned results and underlying ideas proved to be useful in our study of a certain
class of PDMPs with random switching between �ows.

PDMPs, introduced by M. Davis [Dav84] (see also [Cos90, Dav93, Dav06]), constitute
a broad class of non-di�usive Markov processes, for which randomness arises solely from the
jump mechanism, including jump times, post-jump locations, and other changes occurring
at the moments of jumps. This extensive family of processes �nds numerous applications in
various �elds such as biology [CDMR12, MTKY13, RTK17], storage modelling [BKKP05],
internet tra�c [GR09] or control and optimization [CD99, CD08]. PDMPs also appear
as solutions of certain variations on the Poisson-driven stochastic di�erential equations (cf.
[Hor02, MZ10, Kaz13, CK19]), mainly developed by A. Lasota and J. Traple [LT03], which
have signi�cant applications in biomathematics, physics and engineering (cf. [Sny75, DHT84]).

Here, we are concerned with some random dynamical system taking values in The class
of random
dynamical
systems
studied in
[H2]�[H5],
[E1]�[E4].

a Polish metric space Y (equipped with the Borel σ-algebra B(Y )) and perturbed by
random jumps occurring at the jump times of a Poisson process. This means that
the span of time between consecutive jumps is exponentially distributed with a constant rate
λ. Between any two adjacent jumps, the dynamics of these systems is driven by one of the
semi�ows, randomly selected from a �nite set {Si}i∈I , where Si : R+ × Y → Y , of all possible
ones. The selection of the semi�ow is governed by a matrix [πij ]i,j∈I of continuous functions
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πij : Y → [0, 1], satisfying
∑

j∈I πij(y) = 1 for every y ∈ Y and every i ∈ I. The state of the
system right after a jump (commonly referred to as the post-jump location) depends randomly
on the one immediately preceding it, and its probability distribution is governed by a given
stochastic kernel J : Y × B(Y ) → [0, 1].

More speci�cally, we investigate a stochastic process Ψ := {(Y (t), ξ(t))}t∈R+ with values in
X := Y ×I, whose motion can be described as follows. Starting from some initial value (y0, i0),
the process Ψ evolves deterministically, following t 7→ (Si0(t, y0), i0) until the �rst jump time,
say t1 > 0. At this moment the trajectory of the �rst coordinate jumps to another point of
Y , say y1, so that the probability that it will fall into B ∈ B(Y ) is equal to J(Si0(t1, y0), B).
At the same time, the index of the `active' semi�ow, determined by {ξ(t)}t∈R+ , is randomly
switched from i0 to another (or the same) one i1 with probability πi0i1(y1). Then the motion
restarts from the new state (y1, i1) and proceeds as before. Formally, the process Ψ can be
therefore de�ned by setting

Y (t) := Sξn (t− τn, Yn) and ξ(t) := ξn for t ∈ [τn, τn+1) , n ∈ N0, (1)

where Φ̄ := {(Yn, ξn, τn)}n∈N0 is a time-homogeneous Markov chain with state space X × R+

and transition law satisfying

P
(
Φ̄n+1 ∈ Ā | Φ̄n = (y, i, s)

)
=
∑
j∈I

∫ ∞

0
λe−λt

∫
Y
1Ā(u, j, t+ s)πij(u) J (Si(t, y), du) dt (2)

for any n ∈ N0 and any Borel set Ā ⊂ X × R+. Obviously, all the randomness of the PDMP
Ψ is contained in the chain Φ̄. What is more, the sequence Φ := {(Yn, ξn)}n∈N0 describing
post-jump locations is itself an X-valued Markov chain (with respect to its natural �ltration).
Clearly, the transition law of this chain takes the form

P ((y, i), A) := P (Φn+1 ∈ A |Φn = (y, i))

=
∑
j∈I

∫ ∞

0
λe−λt

∫
Y
1A(u, j)πij(u) J (Si(t, y), du) dt

(3)

for any n ∈ N0 and any Borel set A ⊂ X.

The subclass of the PDMPs considered here somewhat resembles those investigated in Comparison
of PDMP
classes
studied
here and
in other
works.

[Cos90, CD99, CD08, BLBMZ12, BLBMZ15, BHS18, BS19]. All the above-listed papers,
however, focus on processes evolving in �nite-dimensional (and thus locally com-
pact) spaces. While proving the existence of invariant distributions and ergodicity
(usually in the total variation norm) in such a setup, one can use various adapta-
tions of conventional methods of S.P. Meyn and R.L. Tweedie [MT93a, MT93b],
based mainly on the Harris recurrence (assured, e.g., by the Hörmander-type

bracket conditions, just as in [BLBMZ15]) or some criteria referring to the so-
called drift towards a petite set. These techniques, however, are mostly valid only
for ψ-irreducible processes, which is, obviously, not the case in our framework
(see also the relevant comments in the Introduction of [H2] and in the abstract of
the paper [HM08] on, the so-called, spectral gaps in the Wasserstein distance for
Markov semigroups on Banach spaces, where it is explained why a new approach
is needed while working with in�nite-dimensional spaces, in which the usual Har-
ris or Doeblin conditions, geared toward total variation convergence, often fail to
hold; cf. also [HM11]).
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Let us indicate that in the series of articles [H2], [H3], [E1]�[E4] (focused on certain ergodic
properties of Markov semigroups) we draw attention to a special case of the above-described
PDMPs with the jump kernel J acting as a transition law of a randomly perturbed IFS, given
by

J(y,B) =

∫
supp(ν)

∫
Θ
1B(wθ(y) + v) pθ(y)ϑ(dθ)ν(dv) for each y ∈ Y and any B ∈ B(Y ),

(4)
in which case Y is a closed subset of a Banach space H, ν is a Borel probability measure on
H with bounded support, Θ stands for an arbitrary topological space, endowed with a Borel
measure ϑ, {wθ}θ∈Θ is a given family of continuous transformations from Y to itself such that
wθ(Y ) + v ⊂ Y for any v ∈ supp(ν), and Θ ∋ θ 7→ pθ(y) ∈ R+, y ∈ Y , are the associated
state-dependent probability density functions with respect to ϑ.

In this setting, the model under consideration may serve as a framework
for analysing the dynamics of gene expression in prokaryotes (see, e.g., [MTKY13,
BTK16], Section 5.1 in [H2] or Example 7.3 in [E2]). Moreover, if ν = δ0, ϑ(Θ) = 1 and
pθ ≡ 1 for every θ ∈ Θ, then {Y (t)}t∈R+ can be treated as the solution to a stochastic
evolution equation with Poisson noise (see, e.g., [Hor02, LT03, MZ10, Kaz13, CK19]).

The discrete-time dynamical system Φ with the jump kernel J de�ned as in Motivation
to con-
sider pro-
cesses
with Pol-
ish state
spaces

(4) can also serve as a model for an autoregulated gene (as described in [HHS16]
or in Section 5.2 of [H2]). Thanks to this example, we see how important it is to
consider non-locally compact spaces as state spaces in the abstract framework (in
the gene autoregulation model, the phase space consists of continuous functions
describing the concentration of chemical compounds at di�erent points in the cell
cytoplasm). Its ergodicity and limit theorems are demonstrated in [H2], [H4] and [H5].

Ergodicity of the considered class of PDMPs and associated chains
describing their post-jump locations

In recent years, much of our research has been dedicated to the study of the PDMP Ψ and
the associated chain Φ which describes its post-jump locations (both introduced and roughly
characterized in the previous section). Our main objective was to develop their ergodic de-
scriptions, addressing the following questions:

� Are these processes ergodic, and if so, how quickly do their distributions stabilize?,

� What are the properties of their invariant probability measures? How do they depend on
model parameters? Are they singular or absolutely continuous with respect to the Lebesgue
measure (in the case of a simpli�ed model where the phase space of these processes is
Rd)?,

� Do any limit theorems hold for them?.

To begin our investigation, we �rst needed to ascertain the assumptions under which the Summary
of [H2].processes Φ and Ψ possess stationary distributions (in fact, we have done even more at once,

that is, we have proposed relatively easily veri�able conditions under which these
stationary distributions, say µΦ∗ and µΨ∗ , respectively, do not only exist, but are
also unique).
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For a speci�c version of the model with jump kernel J given by (4), in which
case the transition law P of the chain Φ (cf. (3)) has the following form:

P ((y, i), A) :=
∑
j∈I

∫ ∞

0
λe−λt

∫
supp(ν)

∫
Θ
1A (wθ (Si(t, y)) + v, j) πij (wθ (Si(t, y)) + v)

× pθ (Si(t, y)) ϑ(dθ) ν(dv) dt for any (y, i) ∈ X, A ∈ B(X),

(5)

this has been done in [H2]: in Theorem 4.1 for the chain Φ and in Corollary 4.5 for
the PDMP Ψ (cf. Section 4.3.3 of this Summary). The proposed conditions are actu-
ally also su�cent to ensure geometric ergodicty of Φ (see Theorem 4.1 in [H2]), which,
roughly speaking, means that the unique invariant probability measure µΦ∗ of the process Φ
attracts all initial distributions (with �nite �rst moments) of this process at a geometric rate
with respect to the Fortet-Mourier distance (see, e.g., [Las95, p. 236] or [LY94, p. 46] for the
de�nition of the Fortet-Mourier norm; cf. also [Dud66], where the equivalent Dudley norm
is discussed). Such a metric, also known in the literature as a bounded-Lipschitz distance, is
de�ned on the cone of non-negative �nite Borel measures on X, and induces the topology of
weak convergence of such measures ([Dud66, Theorems 8 and 9]). As a strightforward cose-
quence of Theorem 4.1, we can deduce a result that refers to stability of the chain {Yn}n∈N0

itself (see Corollary 4.2 in [H2]).
In the proof of the main theorem of [H2] (that is, Theorem 4.1) we take advantage of the

asymptotic coupling techniques introduced by M. Hairer [Hai02] (cf. also [�11] and [D3]), and
apply the results of R. Kapica and M. �l¦czka [KS20], which are based on them (to understand
the main ideas behind [KS20, Theorem 2.1], we refer the reader to the Appendix in [H2], where
we give an outline of its proof; see also Section 2 in [H4], with particular reference to Lemmas
2.2 and 2.3, where we prove an intermediate result, albeit in a slightly stronger version than
that given in [KS20]).

Conditions imposed on the model components, that is, semi�ows Si, i ∈ I, a matrix Remarks
on the as-
sumptions
imposed
on the
model
under
study.

[πij ]i,j∈I of their (place-dependent) probabilities, continuous transformations wθ, θ ∈ Θ, decid-
ing about post-jump locations, and the associated set {pθ}θ∈Θ of (state-dependent) probability
density functions (with respect to ϑ), are all listed in Section 2 of [H2] (see also Section 4.3.3
of this Summary; cf. Section 4 in [H4] and Section 5 in [H5]). The reasonableness of
these hypotheses are discussed in detail in Section 3 of [H2], where it is clari�ed
that the semi�ows enjoying them can be, e.g., generated by certain di�erential
equations involving dissipative operators (see also Section 4 in [E2] or Section 3 in [H3];
cf. [IK02, CK19]). Additional condition involving the jump intensity λ, as well as the con-
stants appearing in the undertaken assumptions, is required to ensure the Foster-Lyapunov
drift condition, appearing in the criterion of R. Kapica and M. �l¦czka ([KS20, Theorem
2.1]) on geometric ergodicity, to which we pertain in the proof of our main result. Condi-
tions of this type are commonly used to study ergodic properties of Markov processes (cf.
[MT93a, MT93b]). Moreover, a similar requirement appears, e.g., in [Las95, Proposition 5.1],
where a Poisson driven stochastic di�erential equation is considered.

Another key result of [H2] is establishing a one-to-one correspondence between the
sets of invariant probability measures of the chain Φ and those of the PDMP Ψ
(Theorem 4.4 in [H2]). Namely, we show that whenever µΦ is an invariant probability measure
of Φ, then µΨ := µΦG is an invariant probability measure of Ψ, and µΨW = µΦ (the converse
statement is also true), where G,W : X × B(X) → [0, 1] are the stochastic kernels de�ned as
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follows:

G((y, i), A) =

∫ ∞

0
λe−λt

1A (Si(t, y), i) dt, (6)

W ((y, i), A) =
∑
j∈I

∫
supp(ν)

∫
Θ
1A (wθ(y) + v, j)πij (wθ(y) + v) pθ(y)ϑ(dθ) ν(dv) (7)

for each (y, i) ∈ X and each A ∈ B(X). Let us indicate that, to prove the above, we addition-
ally assume that the measure ϑ, given on the set Θ, is �nite. The proof of Theorem 4.4 is based
on techniques similar to those employed in [Hor08, Theorem 5.3.1] and [BLBMZ15, Proposi-
tions 2.1, 2.4] (in Lemmas 6.3 and 6.5 in [H2], we demonstrate that the transition semigroup
{P (t)}t∈R+ of Ψ is Feller and stochastically continuous, respectively). Moreover, in the proof
of Theorem 4.4 in [H2] we also apply several results from the theory of semigroups of linear
operators in Banach spaces, among others, those concerning weak in�nitesimal operators of
transition functions (see [Dyn65, pp. 36�43, 47�61] and [Dyn00, pp. 437�448]).

Combining Theorems 4.1 and 4.4 in [H2], we obtain that the PDMP Ψ has the
unique invariant probability measure µΨ∗ (Corollary 4.5 in [H2]).

Then, exponential ergodicity of the considered system with a general jump ker- Summary
of [E2].nel J (but with probabilities πij, i, j ∈ I, which are constant, that is, independent

of the current position of the system) is addressed in Propositions 7.1, 7.2 and
Theorem 7.1 of [E2]. To be more precise, the main goal of [E2] is to provide relatively easy
to check conditions on the kernel J and the semi�ows Si, i ∈ I, which would guarantee that
both the transition operator of the chain Φ and the transition semigroup of the process Ψ are
exponentially ergodic in the Fortet-Mourier distance.

The general strategy of our approach, partially inspired by the techniques used in the proof
of [CH15, Theorem 1.4], is as follows:

(I) showing that, whenever J enjoys some strengthened form of the Feller property, there
exists a one-to-one correspondence between the set of invariant distributions of the pro-
cess Ψ and those of the associated chain Φ (Theorem 5.1 in [E2]);

(II) noting that the existence of an appropriate coupling (Φ(1),Φ(2)) between two copies of Φ,
such that the mean distance between them decreases geometrically with time, in conjunc-
tion with the so-called Foster-Lyapunov drift condition (cf. [DMS14, De�nition 6.23])
and the Feller property imposed on P , ensures the exponential ergodicity of Φ (Lemma 6.1
in [E2]);

(III) proving that, for a given coupling (Φ(1),Φ(2)) of the chain Φ enjoying the property indi-
cated in step (II), the corresponding coupling for the process Ψ has an analogous prop-
erty, provided that the semi�ows Si ful�l a certain Lipschitz-type condition (Lemma 6.2
in [E2]);

(IV) observing that, under suitable assumptions on the semi�ows Si and the kernel J , pro-
viding all the requirements mentioned in steps (I)�(III), the existence of an appropriate
coupling of Φ implies the exponential ergodicity of the process Ψ (Theorem 6.1 in [E2]);

(V) employing some additional hypotheses which, together with the previous ones, ensure
that the coupling mentioned in (II) exists, which leads us directly to the main result of
[E2], that is, Theorem 7.1 (we require the existence of a substochastic kernel QJ on Y 2

with certain speci�c properties, in the spirit of [H4] or [KS20], such that

QJ((y1, y2), · × Y ) ≤ J(y1, ·) and QJ((y1, y2), Y × ·) ≤ J(y2, ·),

14



which further allows to construct a substochastic kernel Q̃P on X2, having the analogous
properties with respect to P ; see Lemma 7.1 in [E2]);

(VI) observing that the transition function of the desired coupling can be then de�ned as the
sum of Q̃P and a suitable complementary kernel (Proposition 7.1 n [E2]).

What is especially noteworthy here is the fact that this approach also elucidates the way in
which the exponential ergodicity of the PDMP Ψ is inherited from the same property for the
associated chain Φ (see steps (I) and (III)). We shall observe the same e�ect while disccusing,
in the subsequent sections, various properties of invariant probability measures of Φ and Ψ,
as well as limit theorems for them.

In the end, let us, however, highlight that it is still an open problem, whether the exponen-
tial ergodicity of the discrete-time model can imply the analogous property for the associated
PDMP in the case of the model with place-dependant probability matrices [πij(y)]i,j∈I , y ∈ Y .

The SLLN for the considered class of PDMPs and associated chains
describing their post-jump locations

Upon establishing that a given process has the unique stationary distribution, it is natu- Summary
of [H2].ral to inquire about approximating it, e.g., through averages of (many) sample trajectories

of this process. In this regard, in [H2], apart from proving exponential ergodicity, we also
demonstrate the SLLN for both the chain Φ (Theorem 4.3 in [H2]) and the PDMP
Ψ (Theorem 4.7 in [H2]).

The SLLN for Φ, stating that, for each bounded Lipschitz observable g : X → R, the
averages n−1

∑n−1
k=0 g(Φk) converge almost surely to

∫
X g dµΦ∗ (with µΦ∗ denoting the unique

invariant probability measure for Φ), is derived from its geometric ergodicity (established in
Theorem 4.1 in [H2]) and a modi�ed version of [Shi03, Theorem 2.1], presented as Theorem
6.2 in [H2], which is a version of the SLLN for mixing-type Markov chains. While the original
result by A. Shirikyan ([Shi03, Theorem 2.1]) is formulated for Markov chains evolving in
Hilbert spaces, a careful analysis of its proof reveals that it can be easily adapted to apply to
the case of Polish state spaces as well (Theorem 6.2 in [H2]).

Using a martingale method (cf. [BLBMZ15]), we then establish the SLLN for the PDMP
Ψ based on the already proven SLLN for Φ and the one-to-one correspondence between invari-
ant probability measures of Ψ and Φ (established in Theorem 4.4 in [H2]). To elaborate, our
approach involves comparing the averages t−1

∫ t
0 g(Ψ(s)) ds and n−1

∑Nt−1
k=0 Gg(Φk), where G

is de�ned by (6), g : X → R represents some bounded Lipschitz observable and {Nt}t∈R+

denotes the renewal counting process with arrival times τn, i.e. Nt := max{n ∈ N0 : τn ≤ t}
for t ∈ R+. We show, using arguments similar to those employed in the proof of [BLBMZ15,
Lemma 2.5], that the di�erence between these two averages vanishes as t → ∞. The subse-
quent steps then follow from Theorems 4.3 and 4.4 in [H2].

Properties of invariant probability measures of the considered class of PDMPs
and associated chains describing their post-jump locations

Knowing that both the transition operator P of the chain Φ and the transition semigroup
{P (t)}t∈R+ of the process Ψ possess unique invariant probability measures, we then examine
their properties.
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In [H3], for any positive jump intensity λ, we investigate a version of the PDMP Ψλ (as well Summary
of [H3].as the chain Φλ of its post-jump locations), given by (1) and (2), whose deterministic behavior

between random jumps is governed by a single semi�ow S, and whose jump mechanism is
determined by a speci�c kernel J , given by

J(y,B) =

∫
Θ
1B (wθ(y)) pθ(y)ϑ(dθ) for each y ∈ Y and B ∈ B(Y ). (8)

The objective of [H3] is to demonstrate the continuous (in the Fortet-Mourier dis-
tance) dependence of the invariant probability measures µΦλ

∗ and µΨλ
∗ (of Φλ and

Ψλ, respectively) on the rate λ of a Poisson process, determining the frequency
of jumps (see Theorems 5.2 and 5.3 in [H3]; cf. Section 4.3.3 of this Summary). The ideas
underlying the proofs of these results can be brie�y summarized as follows. First of all, we
observe that, for any λ > 0 and any µ belonging to a certain subspace of the Banach space
Msig(Y ) of all �nite signed Borel measures on Y , one can express a measure µPλ, with Pλ

denoting a regular Markov operator induced by the transition law

Pλ(y,B) =

∫ ∞

0
λe−λtJ(S(t, y), B) dt

=

∫ ∞

0
λe−λt

∫
Θ
1B (wθ(S(t, y)) pθ(S(t, y))ϑ(dθ) dt, y ∈ Y, B ∈ B(Y ),

(9)

of the chain Φλ, as an appropriate Bochner integral (for de�nition see, e.g., [DU77] or Section 2
in [H3]), i.e.

µPλ =

∫ ∞

0
λe−λtµΠ(t) dt, (10)

where

Π(t)(y,B) :=

∫
Θ
1B (wθ(S(t, y))) pθ(S(t, y))ϑ(dθ) for y ∈ Y, B ∈ B(Y )

(see Lemma 4.1 in [H3]). Then Lemma 4.2 in [H3] establishes that for each µ ∈ Msig(Y ) the
Fortet-Mourier norm of the measure µΠ(t) is not greater than that of µmultiplied by a constant
(dependent on t and the model parameters, excluding λ). In Lemma 4.4 in [H3], we, in turn,
demonstrate that the map (λ, µ) 7→ µPλ is jointly continuous. Referring to Theorem 4.1 in
[H2], we further get that (under its assumptions) the chain Φ is geometrically ergodic (in the
Fortet-Mourier distance). Moreover, we prove that, for any λ from some interval [λmin, λmax]
and any probability measure µ with �nite �rst moment, the Fortet-Mourier distance between
µPn

λ and µΦλ
∗ vanishes uniformly with respect to λ (Lemma 4.5 in [H3]). Finally, using all

of the above, we can deduce the continuity of the map λ 7→ µΦλ
∗ in the topology of weak

convergence of probability measures (Theorem 5.2 in [H3]). As a consequence, keeping in
mind the one-to-one correspondence between µΦλ

∗ and µΨλ
∗ , established in Theorem 4.4 in

[H2], we get the continuity of λ 7→ µΨλ
∗ (Theorem 5.3 in [H3]).

While limit theorems (such as the SLLN or the CLT) provide the theoretical
foundation for successful approximation of the invariant measures by means of
observing or simulating (many) sample trajectories of the processes, this result
asserts the stability of this procedure, at least locally in parameter space. It is
a prerequisite for the development of a bifurcation theory. Moreover, even stronger
regularity of this dependence on parameter (i.e., di�erentiability in a suitable norm in the space
of measures) would be needed for applications in control theory or for parameter estimation
(see, e.g., [GHLSG19]).
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Let us also indicate that, since the considered mathematical model is intended
to describe certain real-world phenomena (such as gene autoregulation, gene expression
or cell division; cf. [H2] and also [HHS16, MTKY13, LM99]), a continuous dependence of
the invariant measure on the model parameter is desirable.

On the other hand, in [E3], we consider the versions of the processes Φ and Ψ with a state Summary
of [E3].space X := Y × I such that Y is a closed (but not necessarily bounded, in contrast to

[BLBMZ15]) subset of Rd. The jump mechanism is described by a kernel J , determined by
(4), with Θ being either an interval in R or a �nite set, and ν = δ0. The main goal of [E3] is
to provide certain veri�able conditions that would imply the absolute continuity
of all the stationary distributions of the PDMP Ψ which correspond to ergodic
stationary distributions of the associated chain Φ (see Theorem 3.2 in [E3]). The
absolute continuity is understood here to hold with respect to the product measure l̄d of the
d-dimensional Lebesgue measure and the counting measure on I. In fact, the problem reduces
to examining the invariant distributions of the chain Φ of post-jump locations.

It should be emphasized that the hypotheses of Theorem 4.4 in [H2] do not ensure that the
unique (and thus ergodic) stationary distribution of Φ (or that of Ψ) is absolutely continuous.
The simplest example illustrating this claim is a system including only one transformation
w1 ≡ 0, for which the Dirac measure at 0 is the unique stationary distribution.

On the other hand, it is well known that, whenever the transition operator of a Markov
chain preserves the absolute continuity of measures, then any ergodic stationary distribution
of the chain must be either singular or absolutely continuous (see [LM94, Lemma 2.2 with
Remark 2.1]; cf. [BH12, Theorem 6]). As clari�ed in Lemma 3.1 in [E3], this is the case for
the chain Φ if, for instance, all the transformations wθ and Si(t, ·) are non-singular with respect
to the Lebesgue measure. Yet, as shown in Example 5.2 in [E3], even under this assumption,
the conditions imposed in [H2] do not guarantee that the unique invariant distribution of the
chain Φ and, thus, that of the PDMP Ψ, is absolutely continuous. It should be also stressed
that, in general, the singularity of some of the transformations wθ does not necessarily exclude
the absolute continuity of invariant measures as well (see, e.g., [Löc18]).

Obviously, the above-mentioned absolute continuity/singularity dichotomy signi�cantly
simpli�es the analysis, since, in such a setting, we only need to guarantee that the `continuous
part' of a given ergodic invariant distribution µΦ∗ of Φ is non-trivial. One way to achieve this
is to provide the existence of an open l̄d-small set (in the sense of [MT93b]) that is uniformly
accessible from some measurable subset of X with positive measure µΦ∗ in a speci�ed number
of steps (see Proposition 3.1 in [E3]).

We do this, following certain ideas of [BLBMZ15] (cf. Lemma 3.3 in [E3]). Furthermore,
if the chain Φ is asymptotically stable (which is the case, e.g., under the hypotheses employed
in [H2]), and (y0, i0) belongs to the support of µΦ∗ , then the Portmanteau theorem ([Kle13,
Theorem 2.1]) ensures that every open neighbourhood of (y0, i0) is uniformly accessible from
some other (su�ciently small) neighbourhood of this point with positive measure µΦ∗ in a given
number of steps (cf. Corollary 3.1 in [E3]). In general, the latter may, however, be di�cult to
verify directly, and the argument works only if the chain is asymptotically stable. Therefore,
we also propose a more practical condition ensuring the accessibility (cf. Lemma 3.4 in [E3]),
which concerns the model components ({wθ}θ∈Θ and {Si}i∈I).
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The CLT and the LIL for Markov processes that are exponentially ergodic
in the Fortet-Mourier norm

To fully characterize the ergodic properties of the considered class of PDMPs and the associ-
ated chains describing their post-jump locations, it remains essential to establish conditions
under which they satisfy the CLT and the LIL. We were initially optimistic, assuming that
certain general versions of these limit theorems, proven for Markov processes which evolve in
Polish metric spaces and which are exponentially ergodic in the Wasserstein distance (cf., e.g.,
[KW12, Theorem 2.1] and [BMS12, Theorem 1]), could be directly applied to our case (as
it was while establishing the SLLN for Φ in [H2]). However, at that moment, the existing
versions of the CLT and the LIL were, to the best of our knowledge, not applica-
ble to the random dynamical systems under study (we will elaborate on this issue
later in this section). This served as a strong motivation to establish new, more
practical versions of these limit theorems.

The CLT is, beside the SLLN, the most fundamental limit theorem for random pro-
cesses. For ψ := {ψ(t)}t∈R+ (ϕ := {ϕn}n∈N0) denoting a time-homogeneous Markov process
(chain) evolving in a Polish metric space E with an arbitrary transition semigroup {P (t)}t∈R+

(one-step transition probability function P ) and the unique invariant probability distribution
µ∗ (either for ψ or for ϕ, depending on the context), g : E → R denoting a bounded Lipschitz
(or, at least, Borel measurable and square integrable with respect to µ∗) observable and
ḡ := g −

∫
E g dµ∗, we say that the process {ḡ(ψ(t))}t∈R+ ({ḡ(ϕn)}n∈N0) obeys the CLT if the

average

1√
t

∫ t

0
ḡ (ψ(s)) ds

(
1√
n

n−1∑
i=0

ḡ (ϕi)

)
converges in law, as t→ ∞ (n→ ∞), to a centered normal random variable.

The LIL can be, in turn, viewed as a re�nement of the SLLN. It improves the convergence
rate in the SLLN from O(t) to O(ln(ln(t))). More speci�cally, it provides the precise values
of the lower and upper limit of almost all sequences formed by the properly scaled integrals
(partial sums) of the sample paths of the stochastic process under study. Moreover, the
LIL gives an interesting illustration of the di�erence between almost sure and distributional
statements, such as the CLT. Using the notation already introduced above, we say that the
process {ḡ(ψ(t))}t∈R+ ({ḡ(ϕn)}n∈N0) obeys the LIL if

lim sup
t→∞

∫ t
0 ḡ(ψ(s))ds√
2t ln(ln(t))

= σ̄(ḡ) and lim inf
t→∞

∫ t
0 ḡ(ψ(s))ds√
2t ln(ln(t))

= −σ̄(ḡ) a.s.(
lim sup
n→∞

∑n−1
i=0 ḡ (ϕi)√

2n ln(ln(n))
= σ(ḡ) and lim inf

n→∞

∑n−1
i=0 ḡ(ϕi)√

2n ln(ln(n))
= −σ(ḡ) a.s.

)

for some 0 < σ̄(ḡ) <∞ (0 < σ(ḡ) <∞).
Historical
back-
ground of
research
on the
limit the-
orems for
Markov
processes.

Initially formulated for independent and identically distributed random variables, the CLT
and the LIL were thereafter generalized to martingales (see, e.g., [Lév35] for the CLT and
[HS73, HH80] for the LIL), which has constituted a background for proving various versions
of these limit theorems pertaining to Markov processes.

Let us �rst discuss the results for (discrete-time) Markov chains. The �rst results in this
�eld deal with stationary Markov chains for which the existence of a µ∗-square integrable solu-
tion to the Poisson equation is guaranteed (cf. the versions of the CLT in [GL78, GL81, DL01];
numerous results related to the classical LIL are summarized in [Bin86]). During the later
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years, many attempts have been made to relax this assumption. For instance, [KV86] refers
to the so-called reversible Markov chains and is based on approximating (in a certain sense)
the solutions of the Poisson equation (see also [Lim00] for a version of the LIL for reversible
Markov processes), while [MW00] and [ZW08] introduce appropriate testable conditions, for
the CLT and the LIL, respectively, relying on the convergence of some series. Another note-
worthy article is [JT20], where the principal hypothesis of [MW00] is reached by assuming
a subgeometric rate of convergence (in terms of the Wasserstein distance) of Markov chain's
distribution to its stationary one.

In recent times, however, most attention has been paid to non-stationary

Markov chains (that is, those whose initial distribution is not necessarily the
stationary one). Some classical results on the CLT and the LIL in this case can be
found in [MT93b]. They involve positive Harris reccurent and aperiodic Markov

chains (or, equivalently, those which are irreducible and ergodic in the total vari-
ation norm), for which a drift condition towards petite sets is ful�lled (which
guarantees the existence of a suitable solution to the Poisson equation). Such
requirements are, however, practically unattainable in non-locally compact state
spaces. In this connection, in order to demonstrate limit theorems for geomet-
rically ergodic (in the Wasserstein distance) Markov chains evolving in Polish
spaces, new approaches have been proposed in a few recent papers, including
[BMS12] and [GHSZ19]. Importantly, a solution to the Poisson equation is not
required there. Our results in [H4] and [H5] are of a similar nature, although �
from the point of view of some applications (cf. the relevant examples discussed
in Section 4 of [H4] and Section 5 of [H5]) � they are more practical.

In [H4] and [H5]we establish certain versions of the CLT and the LIL (in the case Summary
of [H4]
and [H5].

of the LIL, we even prove its functional variant, the so-called Strassen invariance

principle), respectively, for a subclass of non-stationary Markov chains evolving
in general (Polish) metric spaces, based on a kind of geometric mixing in the
Fortet-Mourier distance (see, e.g., [Hai02] for the precise formulation) and the Foster-
Lyapunov type condition (`second order' for the CLT and `higher than second
order' for the LIL). As mentioned above, similar results, although based on geometric
mixing in the Wasserstein distance (see, e.g., [KW12, p. 5] for its de�nition), are stated in
[GHSZ19] and [BMS12]. Additionally, the mixing condition assumed in [GHSZ19] and [BMS12]
is of a di�erent nature than that in our papers, where no dependance on the distance
between initial measures is required. More precisely, in [H4] and [H5] the proofs of the
main results (that is, Theorem 3.2 in [H4] and Theorem 4.7 in [H5]) are based on the condition
of the form: for any two Borel probability measures µ1 and µ2, there exist a Lyapunov function
V : E → R+ (that is, a map which is continuous, bounded on bounded sets, and, in the case of
unbounded E, satis�es limρ(x,x̄)→∞ V (x) = ∞ for some �xed point x̄ ∈ E) and some constants
c > 0 and q ∈ (0, 1) for which

dFM (µ1P
n, µ2P

n) ≤ cqn
(
1 +

∫
E
V d (µ1 + µ2)

)
for any n ∈ N0, (11)

where dFM stands for the Fortet-Mourier metric (which pertains to the ideas employed in
[Hai02]). In [BMS12] and [GHSZ19], in turn, it is required that for any two Borel probability
measures µ1 and µ2 (with �nite �rst moments), there exist constants c > 0 and q ∈ (0, 1) such
that

dW (µ1P
n, µ2P

n) ≤ cqndW (µ1, µ2) for any n ∈ N0, (12)

where dW stands for the Wassertein metric.
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The motivation to replace condition (12) with condition (11) derives from our
research on certain random dynamical systems, discussed earlier in this Summary
(see Section 4.3.2: PDMPs driven by randomly switched semi�ows, in particular de�nitions
(1)�(5)) and applied mainly in molecular biology (cf. [MTKY13, HHS16, LM99] and
[H2]), to which we have not been able to apply neither [BMS12, Theorem 1] nor
[GHSZ19, Theorem 5.1] directly. This is primarily caused by the fact that, upon
certain general conditions imposed on the model (which appear to be reasonable
in most applications), inequality (12) seems to be di�cult or even impossible
to achieve, whilst the same conditions naturally imply (11), as shown, e.g., in
Theorem 4.1 in [H2].

It is also worth stressing that we do not assume condition (11) directly, as it
is usually not straightforward to derive from its de�nition. Instead, we propose
a set of conditions, relatively easy to verify, which yield not only the geometric
mixing property (11), but also the existence of the unique invariant probability
measure (due to [KS20, Theorem 2.1]), as well as the desired assertions, that is, the
CLT (Theorem 3.2 in [H4]) and the LIL (Theorem 4.7 in [H5]).

The class of non-stationary Markov-Feller chains for which we establish the CLT and the
LIL may be characterised by just two properties. The �rst one concerns the existence of an
appropriate Markovian coupling whose transition function can be decomposed into two parts,
one of which is contractive and dominant in some sense. The construction of such a coupling is
adapted from [Cza18, KS20], which, in turn, is inspired by the prominent results of M. Hairer
[Hai02]. Within this framework, we provide a geometric estimate of the mean distance between
two coupled copies of the examined chain. This result, stated in Lemmas 2.2 and 2.3 in [H4],
slightly generalizes the geometric mixing property obtained by R. Kapica and M. �l¦czka while
proving [KS20, Theorem 2.1]. The precise proofs of these lemmas are interesting themselves,
as well as they also clarify the reasoning presented in [KS20]. In fact, Lemmas 2.2 and 2.3 play
a key role in both [H4] and [H5]. The second property which characterises the distiguished
class of Markov-Feller chains is enjoying by their transition operators a non-linear Lyapunov-
type condition. One of the simplest classes of Markov chains achieving the desired properties
are those arised from random IFSs with an arbitrary number of transformations, which are
assumed to be contractive on average, such as those considered in [Wer05, HS06, �11, KS20].

The proof of Theorem 3.2 in [H4] also appeals to the results of M. Maxwell and M.Woodroof
[MW00], which make it more concise and less technical than the classical proofs, based directly
on martingale methods. The proofs in [D2] and [Hor16] are carried out in the same spirit,
although only for some speci�c cases. It is also worth mentioning here that the conditions
proposed in [H4] yield the Donsker invariance principle for the CLT (cf. [Bil99]),
provided that the Markov chain is stationary.

On the other hand, some proof techniques, employed in [H5], are adapted from the articles
[BMS12] and [D1], which both pertain to the martingale results by C.C. Heyde and D.J. Scott
[HS73]. At the beginning of Section 4 in [H5], we also present a few general observations
concerning martingales (see Lemmas 3.2�3.5), which are then useful in the proof of the main
result of that paper, that is, Theorem 4.7.

Finally, to justify the usefulness of the newly established general versions of the
CLT (Theorem 3.2 in [H4]) and the LIL (Theorem 4.7 in [H5]), we apply them
to prove the CLT (Theorem 4.1 in [H4]) and the LIL (Theorem 5.2 in [H5]) for
a speci�c non-stationary Markov chain Φ, whose transition probability function is
given by (5), and whose possible applications are discussed in Section 4.3.2: PDMPs driven
by randomly switched semi�ows of this Summary.
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Let us now turn to limit theorems for continuous-time Markov processes. Similarly to the
discrete case, these theorems were initially established for stationary processes (e.g., for ergodic
processes with normal generators in [Hol05], extending the results of [GL81]; see also [OLK12]).
Subsequently, a few results for non-stationary Markov processes with continuous-time param-
eters have emerged. Probably the most general result of this kind to date is stated as [KW12,
Theorem 2.1] (its analog in the discrete-time case is given as [GHSZ19, Theorem 5.1]).

In [E1] we establish a version of the CLT for Markov-Feller continuous time Summary
of [E1].processes (with a Polish state space) that are exponentially ergodic in the Fortet-

Mourier distance and enjoy a continuous form of the Foster-Lyapunov condition.
This result is, again, mainly inspired by the inability to directly apply the existing version of the
CLT ([KW12, Theorem 2.1] by T. Komorowski and A. Walczuk in this case) to some subclass
of PDMPs, at least under certain (relatively natural) conditions imposed in Proposition 7.2
in [E2] (cf. Section 4.3.2: PDMPs driven by randomly switched semi�ows of this Summary).

The problem lies in accomplishing the exponential mixing in the sense of condition (H1),
employed in [KW12], which requires a form of the Lipschitz continuity of each P (t) with
respect to the Wasserstein distance dW. More precisely, the authors assume the existence of
γ > 0 and c̄ <∞ such that for any two Borel probability measures µ1 and µ2 (with �nite �rst
moments) the following holds:

dW (µ1P (t), µ2P (t)) ≤ c̄e−γtdW (µ1, µ2) for any t ∈ R+. (13)

We therefore recognize the need to introduce a new, more useful criterion that would involve
a weaker form of the above requirement (as in the discrete case). In this connection, instead
of (13) we assume in [E1] that there is some γ > 0 such that, for any two Borel probability
measures µ1 and µ2, there exist a continuous function V : E → [0,∞) and constants c̄ > 0,
δ ∈ (0, 1), for which

dFM (µP (t), νP (t)) ≤ c̄e−γt

(∫
E
V d(µ+ ν) + 1

)δ

for any t ∈ R+. (14)

Besides, an additional advantage of our approach is that this metric is weaker than the Wasser-
stein one, among others, in a manner enabling the use of a coupling argument (introduced by
M. Hairer in [Hai02]) to reach an exponential mixing property w.r.t. dFM, which fails while
demanding it in terms of dW.

As mentioned above, the proof of our main result, that is, Theorem 2.1 in [E1], is in many
places based on the reasoning presented in [KW12]. Nevertheless, it should be emphasized
that without a Lipschitz type assumption on the semigroup {P (t)}t∈R+ , such as (13) (or its
discrete-time analogue, employed, e.g., in [GHSZ19]; cf. also [BMS12]), proving the principal
limit theorems, like the CLT or the LIL, requires some more subtle arguments, which is also
re�ected in [H4], [H5] or [KPS13]. Most importantly, under condition (14), the so-called
corrector function χ : E → R, given by

χ(x) =

∫ ∞

0
P (t)ḡ(x) dt for any x ∈ E,

does not need to be Lipschitzian (which is a meaningful argument in the proof of [KW12,
Theorem 2.1]), but is only continuous. Another problem arising in our setting is that the weak
convergence of the process distribution (towards the stationary one), guaranteed by (14), yields
the convergence of the corresponding integrals as long as the integrands are (apart of being
continuous) bounded, which is not required while using the Wasserstein distance. We have
overcome this obstacle (see Lemma 3.9 in [E1]) by making the use of [Bog07, Lemma 8.4.3],
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which allows replacing the boundedness of the integrand by its uniform integrability with
respect to the family of measures constituing the convergent sequence under consideration.

In Section 4 of [E1], we also elaborate on a representation of σ2, that is, the variance of
the limit normal distribution involved in Theorem 2.1, while in Section 5 of [E1] we justify
the usefulness of the main result (Theorem 2.1) by applying it to establish the CLT for the
PDMP Ψ considered in [E2] (see Corollary 5.1 in [E1]).

In the future, our goal is to establish an equivalent of Theorem 2.1 in [E1], which would
address the LIL for Markov-Feller continuous-time processes (with a Polish state space) that
are exponentially ergodic in the Fortet-Mourier distance and satisfy a continuous form of the
Foster-Lyapunov condition. Some inspiration for this project can be found not only in [E1],
but also in [KPS13].

At the end of this section, let us shortly summarize the results presented in [E4]. The Summary
of [E4].main goal of that paper is to prove the validity of the LIL for the PDMP Ψ

introduced in [H2] (and discussed in detail in Section 4.3.2: PDMPs driven by randomly
switched semi�ows of this Summary). Our method of proof is intentionally such that
the result for Ψ, de�ned as in (1) and (2), is derived from the validity of the LIL for
the associated chain Φ given by its post-jump locations, already etablished in Theorem
5.2 in [H5].

Essentially, our method of proof splits the problem into two subproblems that are analyzed
separately (in Sections 3.2 and 3.1 of [E4], respectively). One subproblem can be addressed
using a version of the LIL for certain square integrable martingales, whose proof draws heav-
ily on [HS73, Theorem 1] and asymptotic coupling methods, used in a similar way as in the
proof of Lemma 2.2 in [H4]. Another builds on the validity of the LIL for a Markov chain Φ
associated to PDMP Ψ.

Summarizing this and the above sections, let us point out that the di�culty of
our research arises from the fact that we do not impose any signi�cant restrictions
on the phase space of the considered process, such as compactness. The assump-
tion of compactness (or even local compactness) would limit the applicability of
the obtained results to �nite-dimensional spaces only. However, we are aware
that modeling real-world phenomena often requires functional spaces, which are
in�nite-dimensional (e.g., in the gene autoregulation model introduced in [HHS16],
the phase space consists of continuous functions describing the concentration of
chemical compounds at di�erent points in the cell cytoplasm).
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Random Interval Homeomorphisms

In [H6] we are concerned with an IFS generated by orientation-preserving homeo- Summary
of [H6].morphisms on the interval [0, 1], previously examined (among others) by K. Czudek

and T. Szarek in [CS20], and we prove that, besides the CLT (see [CS20, Theorem
4], it also obeys the LIL.

Let us begin with recalling the de�nition of an admissible IFS. Let f1, . . . , fN be increas-
ing homeomorphisms of the interval [0, 1] such that for every x ∈ (0, 1) there exist indexes
i, j ∈ {1, . . . , N} for which fi(x) < x < fj(x). It is assumed that all the homeomorphisms are
di�erentiable at 0 and 1 with non-zero derivatives. Moreover, let (p1, ..., pN ) be a probability
vector such that

N∑
i=1

pi log
(
f ′i(0)

)
> 0 and

N∑
i=1

pi log
(
f ′i(1)

)
> 0.

The family (f1, . . . , fN ; p1, . . . , pN ) is then called an admissible IFS .
Now, let (f1, . . . , fN ; p1, . . . , pN ) be an admissible IFS, and note that it generates a stochas-

tic kernel P : [0, 1]× B([0, 1]) → [0, 1], which is given by

P (x,A) =
N∑
i=1

piδx
(
f−1
i (A)

)
for any x ∈ [0, 1], A ∈ B([0, 1]). (15)

By the continuity of the functions fi, i ∈ {1, . . . , N}, the corresponding regular Markov
operator P is obviously Feller.

In what follows, let us denote by {Xn}n∈N the Markov chain with transition probability
function P , de�ned in the coordinate space ([0, 1]N,B([0, 1]N)), equipped with an appropriate
collection {Pν}ν of probability measures on B([0, 1]N) such that Pν(Xn+1 ∈ A|Xn = x) =
P (x,A) and Pν(X1 ∈ A) = ν(A) for any probability measure ν on [0, 1].

The article [CS20], besides the proof of the CLT, also contains a simple proof of the
unique ergodicity in the open interval (0, 1) for the Markov operator P , determined by (15).
More precisely, [CS20, Theorem 1] says that P has the unique invariant probability mea-
sure µ∗ on (0, 1) which is atomless, and [CS20, Theorem 2] yields the asymptotic stabil-
ity of P in the space of probability measures supported on (0, 1) (i.e., µ∗((0, 1)) = 1 and
limn→∞

∫
[0,1] φd(µP

n) =
∫
[0,1] φdµ∗ for every continuous function φ : [0, 1] → R).

It shall be highlighted that, historically, such a phenomenon was �rst proved by L. Alsedá
and M. Misiurewicz for some function systems consisting of piecewise linear homeomorphisms
(see [AM14]). More general IFSs were then considered by M. Gharaei and A. J. Homburg
in [GH17] ([CS20, Theorems 1 and 2] are just the repetition of these arguments). Recently,
D. Malicet has also obtained the unique ergodicity as a consequence of the contraction princi-
ple for time homogeneous random walks on the topological group of homeomorphisms de�ned
on the circle (see [Mal17]). His proof, in turn, is based upon the invariance principle of A. Avila
and M. Viana (see [AV10]).

Let φ : [0, 1] → R be an arbitrary Lipschitz function satisfying
∫
[0,1] φdµ∗ = 0, where µ∗

denotes the unique invariant probability measure of P on (0, 1), and let {X∗
n}n∈N stand for

the stationary Markov chain with transition probability function P given by (15) (that is,
the Markov chain with transition probability function P starting from its stationary distribu-
tion µ∗).
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The proof of the CLT for {φ(Xn)}n∈N, which is given in [CS20], is based on the Maxwell�
Woodroofe approach [MW00] for ergodic stationary Markov chains. The direct application of
the results from [MW00] allows to prove the CLT for the stationary Markov chain {φ(X∗

n)}n∈N
(the so-called annealed CLT ). On the other hand, if additionally some coupling techniques are
applied to evaluate the distance between the Fourier transforms of the stationary and an ar-
bitrary non-stationary Markov chain, then the so-called quenched CLT follows.

Similarly, in [H6], we also �rst establish the LIL for the stationary Markov chain
{φ(X∗

n)}n∈N (see Proposition in [H6]). The arguments in this case are based on the
results by O. Zhao and M. Woodoofe [ZW08]. In our setting, the Zhao-Woodroofe
criterion for the LIL for the chain {φ(X∗

n)}n∈N takes the following form:

∞∑
n=1

(
ln(n)

n

)3/2
∥∥∥∥∥

n∑
k=1

P kφ

∥∥∥∥∥
L2(µ∗)

<∞,

where ∥ · ∥L2(µ∗) denotes the L
2-norm with respect to the invariant probability measure µ∗

of P on (0, 1) (cf. [ZW08, Theorem 1 and Corollary 1]). Then, using some calculations
given in [CS20], we prove the validity of the quenched LIL (see Theorem in [H6]).

Quenched limit theorems (either CLTs or LILs) have been recently proved for
various non-stationary Markov processes (see our papers [H4] and [H5], discussed
in the prevous section, as well as the articles [DL01, LS05, KW12, OLK12, BMS12,
GHSZ19], just to name a few). Most of them are formulated for Markov processes
with transition probabilities satisfying the property of the spectral gap in the total
variation or, at least, the Wasserstein/Fortet-Mourier norm. However, it is not
known whether the Markow chain {Xn}n∈N corresponding to an admissible IFS
(f1, . . . , fN ; p1, . . . , pN ) is such. Moreover, in the case when each of the functions
fi, i ∈ {1, . . . , N}, has a �xed point at 0 and at 1, no cotracting condition (either
that demanded in [H4], [H5] or that required in [BMS12, GHSZ19], both leading
to geometric ergodicity of P to equilibrium) may hold. Therefore, to the best of
our knowledge, none of the existing criteria for the quenched CLT or LIL could
be applied directly.

In the future, it may be interesting to investigate the validation of the large deviations
principle under Maxwell-Woodroofe or Zhao-Woodroofe-type conditions. As far as we know,
there is no literature on this topic so far, and thus new methods have to be developed.
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4.3.3 Presentation of the main theorems of the scienti�c achievement

[H1] The e-property of asymptotically stable Markov-Feller operators

Let (E, ρ) be a Polish metric space. The two main results of [H1] read as follows:

Theorem 4.1 (Theorem 3.1 in [H1]). Let P be an asymptotically stable Markov-Feller operator
with values in E. The set of points where P fails the e-property in Cb(E) is a set of �rst
category, while the set of points at which P has the e-property in Cb(E) is dense.

Theorem 4.2 (Theorem 3.5 in [H1]). Let P be an asymptotically stable Markov-Feller operator
with values in E, and let µ∗ denote its invariant probability measure. Then P has the e-property
in Cb(E) if there exists at least one point z ∈ supp(µ∗) at which P has the e-property in Cb(E).

The combination of Theorems 4.1 and 4.2 leads to the following result by S.C. Hille,
T. Szarek, and M. Ziemla«ska [HSZ17]:

Theorem 4.3. [HSZ17, Theorem 2.3] Let P be an asymptotically stable Markov-Feller opera-
tor with values in E, and let µ∗ denote its invariant probability measure. If Int(supp(µ∗)) ̸= ∅,
then P satis�es the e-property in Cb(E).

Indeed, it is clear, according to Theorem 4.1, that if the interior of the support of an
invariant probability measure of a Markov�Feller operator P is non-empty, then there exists
at least one point in this support at which P has the e-property. This, in turn, implies, due
to Theorem 4.2, that P has the e-property at any point.

Now, let Lipb,1(E) be the subspace of the space Lipb(E) given by

Lipb,1(E) := {f ∈ Lipb(E) : ∥f∥BL ≤ 1} , (16)

where the norm ∥ · ∥BL is de�ned as

∥f∥BL := max

{
∥f∥∞, sup

x ̸=y

|f(x)− f(y)|
ρ(x, y)

}
for any f ∈ Lipb(E). (17)

The proof of Theorem 4.2 is based on the application of [HSZ17, Lemma 2.4], while, to
prove Theorem 4.1, we, among others, use the following lemma:

Lemma 4.1 (Lemma 3.4 in [H1]). A regular E-valued Markov operator P which is asymp-
totically stable and which has the e-property in Lipb,1(E) at z ∈ E also has the e-property in
Cb(E) at z ∈ E.

At this point, let us also emphasize that, thanks to Lemma 4.1, we can immediately
extend the statement of [HSZ17, Theorem 2.3] from its original formulation, which is limited
to the e-property in Lipb(E), to the more general context of the e-property in Cb(E) (as in
Theorem 4.3).

Finally, let us indicate that Section 4 of [H1] includes two important examples. In Ex-
ample 1 we construct an asymptotically stable Markov-Feller operator P such that the set of
points at which P fails the e-property in Cb(S) is dense, making it a non-trivial set of �rst
category. The main aim of presenting this example is to demonstrate that Theorem 4.1 is
a tight result. In Example 2 we construct an asymptotically stable Markov-Feller operator
P such that the set of points where P fails the e-property in Cb(S) has positive Lebesgue
measure, and hence it is uncountable.
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The results presented in [H1] complement and specify the description of the rela-
tionship between the e-property and the asymptotic stability of Markov operators
in general (Polish) metric spaces. Notably, they generalize [HSZ17, Theorem 2.3].

[H2] Ergodic properties of some PDMP with application to gene expression

modelling

For an arbitrary Polish metric space (E, ρ), let us write M(E) and M1(E) for the space of all
�nite non-negative Borel measures on E and its subset consisting of all probability measures,
respectively. Moreover, for any given Borel measurable function V : E → R+ and any r > 0,
let us consider the subsetMV

1,r(E) ofM1(E) consisting of all measures with �nite r-th moment
with respect to V , that is,

MV
1,r(E) :=

{
µ ∈ M1(E) :

∫
E
V r dµ <∞

}
.

To evaluate the distance between measures, we here use the Fortet-Mourier metric, which on
M(E) is obviously given by

dFM(µ, ν) := sup
f∈Lipb,1(E)

∣∣∣∣∫
E
f d(µ− ν)

∣∣∣∣ for any µ, ν ∈ M(E), (18)

where Lipb,1(E) is de�ned in (16).

Consider a separable Banach space (H, ∥ · ∥) and a closed subset Y of H (note that we can
think of Y as a Polish metric space with the metric induced by the norm ∥ · ∥ in H). Let us
also �x a topological measure space (Θ,B(Θ), ϑ) with a �nite Borel measure ϑ, and let I be
a �nite set equipped with the metric d given by d(i, j) = 0 for i = j and d(i, j) = 1 otherwise.

We here investigate a PDMP Ψ = {(Y (t), ξ(t))}t∈R+ , evolving through jumps, occuring at
random moments τn, n ∈ N, which coincide with the jump times of a Poisson process with
a given intensity λ > 0. The deterministic behaviour of the system between the jumps is
governed by a collection {Si}i∈I of semi�ows, where Si : R+ × Y → Y , and any state right
after the jump is attained by a randomly selected continuous transformation wθ : Y → Y ,
θ ∈ Θ (a more detailed description can be found in Section 2 in [H2], Section 4 in [H4], Section
5 in [H5] or Section 4.3.2: PDMPs driven by randomly switched semi�ows of this Summary).

Let X := Y × I be endowed with the metric ρc̃ given by

ρc̃ ((y1, i1), (y2, i2)) = ∥y1 − y2∥+ c̃ d(i1, i2) for (y1, i1), (y2, i2) ∈ X,

where c̃ ≥ 1 is some su�ciently large constant (de�ned explicitly in [H2]).
Formally, we consider:

� an X-valued time-homogeneous Markov chain Φ := (Yn, ξn)n∈N0 (cf. (2) or Eqs. (2.3)
and (2.4) in [H2]) with transition law P : X×B(X) → [0, 1] given by (5), where {ξn}n∈N0

is an I-valued sequence of random variables describing the indexes of the `currently
active' semi�ows,

� and an X-valued time-homogenous Markov process Ψ := {(Y (t), ξ(t))}t∈R+ de�ned via
interpolation of Φ by (1) (the transition semigroup of Ψ will be denoted by {P (t)}t∈R+).
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Let us detail the conditions that we impose on the model components, that is, semi�ows Si,
i ∈ I, a matrix [πij ]i,j∈I of their (place-dependent) probabilities, continuous transformations
wθ, θ ∈ Θ, deciding about post-jump locations, and the associated set {pθ}θ∈Θ of (state-
dependent) probability density functions (with respect to ϑ). We assume that there exist
ȳ ∈ Y , a function L : Y → R+ that is bounded on bounded sets, and constants α ∈ R,
L, Lw, Lπ, Lp, cπ, cp > 0 such that

LLw + α/λ < 1, (19)

and, for any i, i1, i2 ∈ I, y1, y2 ∈ Y , t ∈ R+, the following conditions hold:

sup
y∈Y

∫ ∞

0
e−λt

∫
Θ
∥wθ(Si(t, ȳ))− ȳ∥ pθ (Si(t, y)) ϑ(dθ) dt <∞, (M1)

∥Si1(t, y1)− Si2(t, y2)∥ ≤ Leαt ∥y1 − y2∥+ tL(y2) d(i1, i2), (M2)∫
Θ
∥wθ(y1)− wθ(y2)∥ pθ (y1) dθ ≤ Lw ∥y1 − y2∥ , (M3)∑

j∈I
|πij(y1)− πij(y2)| ≤ Lπ ∥y1 − y2∥ ,

∫
Θ
|pθ (y1)− pθ (y2)| dθ ≤ Lp ∥y1 − y2∥ , (M4)

∑
j∈I

πi1j(y1) ∧ πi2j(y2) ≥ cπ,

∫
Θ(y1,y2)

pθ (y1) ∧ pθ (y2) dθ ≥ cp, (M5)

where Θ(y1, y2) := {θ ∈ Θ : ∥wθ(y1)− wθ(y2)∥ ≤ Lw∥y1 − y2∥}.

Interested readers are referred to Section 3 of [H2], where we discuss the reasonableness
of the above-listed assumptions. Speci�cally, we provide justi�cation for the attainability of
condition (M2) within a broad class of semi�ows acting on re�exive Banach spaces (partic-
ularly, Hilbert spaces). Furthermore, we elaborate on how such semi�ows can be generated
by speci�c di�erential equations involving dissipative operators (cf. [IK02, CK19]). We also
observe that, in many cases, condition (M1) can be easily derived from the conjunction of
(M2) and (M3).

Moreover, we observe that conditions (M3)�(M5), which ensure that the system of trans-
formations {wθ}θ∈Θ is contractive on average, and which impose additional restrictions on
probabilities and densities in the model, are also quite natural. Such properties are commonly
demanded in the analysis of asymptotic properties of classical random IFSs (cf. [LY94] or
[Sza03]), which are covered by our discrete-time model. The example discussed in [Ste01]
highlights that assumptions formulated in a manner similar to (M4) cannot be omitted, even
in the simplest scenarios. To elaborate, the system {(S1, p), (S2, 1−p)}, consisting of two con-
tractions S1 and S2 and a positive continuous probability function p, may admit more than
one invariant probability measure (unless, at least, the Dini continuity of p is assumed).

The main aim of the article [H2] is to provide a criterion on geometric ergodicity (in dFM)
of the chain Φ.

In what follows, let V : X → [0,∞) be given by V (y, i) = ∥y − ȳ∥ for any (y, i) ∈ X.

Theorem 4.4 (Theorem 4.1 in [H2]). Suppose that conditions (M1)-(M5) hold with con-
stants satisfying (19). Then the Markov operator P induced by the transition probability func-
tion of the chain Φ, given by (5), has the unique invariant probability measure µΦ∗ such that
µΦ∗ ∈ MV

1,1(X). Moreover, there exist x̄ ∈ X and constants c ∈ (0,∞), q ∈ [0, 1) for which

dFM(µPn, µΦ∗ ) ≤ c

(∫
X
ρc̃(x̄, ·) d

(
µ+ µΦ∗

)
+ 1

)
qn for all n ∈ N and any µ ∈ MV

1,1(X).
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The proof of Theorem 4.4 is based on applying the asymptotic coupling method introduced
in [Hai02]. More precisely, we use [KS20, Theorem 2.1], which gives su�cient conditions for
a general Markov chain (in terms of its Markovian coupling) to be exponentially ergodic in
the sense described above.

Theorem 4.4 allows us to show the SLLN for the chain Φ. This can be done by appealing
to a general result of A. Shirikyan [Shi03] (see Theorem 6.2 in [H2] for the precise formulation
of the result which we apply in the proof of Theorem 4.5, and which is a modi�ed version of
[Shi03, Theorem 2.1]).

Theorem 4.5 (The SLLN for Φ; Theorem 4.3 in [H2]). Suppose that conditions (M1)�(M5)
hold with constants satisfying (19). Then, for each g ∈ Lipb(X) and any initial state x ∈ X,
we have

lim
n→∞

1

n

n−1∑
k=0

g(Yk, ξk) =

∫
X
g dµΦ∗ Px- a.s.,

where µΦ∗ is the unique invariant distribution for the Markov operator P (which exists by
Theorem 4.4).

From now on we will assume that Θ, i.e. the set of indexes of the transformations
y 7→ wθ(y), is endowed with a �nite measure ϑ.

The next result concerns a one-to-one correspondence between invariant probability mea-
sures of the operator P (corresponding to the chain Φ) and invariant probability measures of
the semigroup {P (t)}t∈R+ (corresponding to the continuous-time process Ψ).

Theorem 4.6 (Theorem 4.4 in [H2]). Let P , given by (5), be the transition probability function
of the chain Φ, and let {P (t)}t∈R+ be the Markov semigroup corresponding to the PDMP Ψ,
determined by (1). Moreover, let the stochastic kernels G,W : X × B(X) → [0, 1] be given by
(6) and (7), respectively.

(1) If µΦ∗ is an invariant probability measure for the Markov operator P , then µΨ∗ := µΦ∗G is
an invariant probability measure for the Markov semigroup {P (t)}t∈R+ and µΨ∗ W = µΦ∗ .

(2) If µΨ∗ is an invariant probability measure for the Markov semigroup {P (t)}t∈R+, then
µΦ∗ := µΨ∗ W is an invariant probability measure for the Markov operator P and µΦ∗G = µΨ∗ .

Combining Theorems 4.4 and 4.6 immediately gives the following:

Corollary 4.1 (Corollary 4.5 in [H2]). Suppose that conditions (M1)�(M5) hold with constants
satisfying (19). Then the Markov semigroup {P (t)}t∈R+ of the PDMP Ψ, determined by (1),
has the unique invariant probability measure.

Theorems 4.5 and 4.6 then lead us to the SLLN for Ψ.

Theorem 4.7 (The SLLN for Ψ; Theorem 4.7 in [H2]). Suppose that conditions (M1)�(M5)
hold with a bounded (or, which is the same thing, constant) L : Y → R+, and that (19) is
satis�ed. Then, for any g ∈ Lipb(X) and any initial state (y, i) ∈ X, we have

lim
t→∞

1

t

∫ t

0
g (Y (s), ξ(s)) ds =

∫
X
g dµΨ∗ P(y,i)-a.s. (20)

where µΨ∗ stands for the unique invariant distribution of Ψ (which exists by Corollary 4.1).
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The additional assumption regarding the function L ensures that the operator g 7→ Gg pre-
serves the Lipschitz continuity. This is necessary for our proof method to work, as it enables us
to apply Theorem 4.5 for the Markov chain {Gg(Yn, ξn)}n∈N0 . Obviously, the above-mentioned
requirement is always ful�lled if the process evolves according to only one semi�ow.

Section 5 in [H2] is intended as an attempt to demonstrate the generality of the abstract
model. We show that it is �exible enough to capture at least two completely di�erent dynamical
systems, regarding a continuous-time model of prokaryotic gene expression (cf. [MTKY13])
and a discrete-time model for an autoregulated gene in bacterium (cf. [HHS16]). Although
the �rst of them is spanned on a �nite-dimensional space (and might possibly be analysed by
using some simpler tools), we believe that the combination of these two examples shows the
universality of the presented approach.

[H3] Continuous dependence of an invariant measure on the jump rate

of a PDMP

Let us follow the notation already introduced above, when the results of [H1] and [H2] were
presented. Moreover, let Lipb(Y )∗ stand for the dual space of (Lipb(Y ), ∥ · ∥BL), where ∥ · ∥BL

is given by (17), with the operator norm ∥ · ∥∗BL given by

∥φ∥∗BL := sup {|φ(f)| : f ∈ Lipb(Y ), ∥f∥BL ≤ 1} for any φ ∈ Lipb(Y )∗.

According to [Dud66, Lemma 6]), the map Msig(Y ) ∋ µ 7→ Iµ ∈ Lipb(Y )∗ is injective, and
thus the space (Msig(X), ∥·∥TV) may be embedded into (Lipb(Y )∗, ∥·∥∗BL). This enables us to
identify each measure µ ∈ Msig(Y ) with the functional Iµ ∈ Lipb(Y )∗. In view of this, ∥ · ∥∗BL

induces a norm in Msig(Y ), called the Fortet-Mourier (or bounded Lipschitz) norm ∥ · ∥FM.
Consequently, we can write

∥µ∥FM := ∥Iµ∥∗BL = sup

{∣∣∣∣∫
Y
f dµ

∣∣∣∣ : f ∈ Lipb(Y ), ∥f∥BL ≤ 1

}
for any µ ∈ Msig(Y ).

For any positive jump intensity λ, we study the version of the PDMP Ψλ, given by (1) and
(2), whose deterministic behavior between random jumps is driven by just one semi�ow S and
whose jump mechanism is determined by the speci�c kernel J given by (8). The post-jump
locations of Ψλ are then described by the chain Φλ with transition law Pλ de�ned as in (9).

The assumptions imposed on the model are very similar to those employed in [H2] (and so
the assertion of Theorem 4.4 holds). Let us, however, state them explicitly below (any reader
interested in their reasonableness is referred either to the previous section or to Section 3 of
[H3]). We assume that there exist a point ȳ ∈ Y , a Borel measurable function J : Y → [0,∞)
and constants α ∈ R, L,Lw, Lp, λmin, λmax, p > 0, such that

LLw +
α

λ
< 1 for each λ ∈ [λmin, λmax], (21)
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and, for any y1, y2 ∈ Y , the following conditions hold:

sup
y∈Y

∫ ∞

0
e−λmint

∫
Θ
pθ (S(t, y)) ∥wθ (S(t, ȳ))∥ dθ dt <∞, (Λ1)

∥S (t, y1)− S (t, y2)∥ ≤ Leαt ∥y1 − y2∥ for t ∈ R+, (Λ2)

∥S (t, y1)− S (s, y1)∥ ≤ (t− s)emax{αs,αt}J (y1) for 0 ≤ s ≤ t, (Λ3)∫
Θ
pθ (y1) ∥wθ (y1)− wθ (y2)∥ dθ ≤ Lw ∥y1 − y2∥ , (Λ4)∫

Θ
|pθ (y1)− pθ (y2)| dθ ≤ Lp ∥y1 − y2∥ , (Λ5)∫
Θ(y1,y2)

min {pθ (y1) , pθ (y2)} dθ ≥ p, (Λ6)

where Θ(y1, y2) := {θ ∈ Θ : ∥wθ(y1)− wθ(y2)∥ ≤ Lw ∥y1 − y2∥}.
Note that, upon assuming (21), we have λ > max{0, α} for any λ ∈ [λmin, λmax]. Moreover,

let us introduce the subset Msig,J (Y ) of the set Msig(Y ) de�ned as

Msig,J (Y ) =

{
µ ∈ Msig(Y ) :

∫
Y
J d|µ| <∞

}
, where J is given in (Λ3).

In Section 4 of [H3] we analyze certain properties of the Markov operator Pλ induced by
the transition kernel Pλ of Φλ. In what follows, let Π(t) be given by (10) for any t ∈ R+.

Lemma 4.2 (Lemma 4.1 in [H3]). Suppose that conditions (Λ3)�(Λ5) hold. Then, for any
λ > 0 and any µ ∈ Msig,J (Y ), the function t 7→ e−λtµΠ(t) is Bochner integrable (all the
necessary de�nitions and basic properties concerning Bochner integrals are gathered in Section
2 of [H3]) as a map from R+ to (Cl(Msig(Y )), ∥ · ∥∗BL|Cl(Msig(Y ))), and we have

µPλ =

∫ ∞

0
λe−λtµΠ(t) dt.

Lemma 4.3 (Lemma 4.2 in [H3]). Let f ∈ Lipb(Y ). Upon assuming (Λ2), (Λ4) and (Λ5),
we have ∥∥µΠ(t)

∥∥
FM

≤
(
1 + (Lw + Lp)Le

αt
)
∥µ∥FM for any µ ∈ Msig(Y ), t ∈ R+.

Lemma 4.4 (Lemma 4.4 in [H3]). Let Msig(Y ) be endowed with the topology induced by the
norm ∥ · ∥FM, and suppose that conditions (Λ2)�(Λ5) hold. Then, the map

(max{0, α},∞)×Msig,J (Y ) ∋ (λ, µ) 7→ µPλ ∈ Msig(Y )

is jointly continuous.

Lemma 4.5 (Lemma 4.5 in [H3]). Suppose that conditions (Λ1), (Λ2) and (Λ4)�(Λ6) hold
with constants satisfying (21), and, for any λ ∈ [λmin, λmax], let µ

Φλ
∗ stand for the unique

invariant probability measure of Φλ (existing due to Theorem 4.4). Then, the convergence∥∥µPn
λ − µΦλ

∗
∥∥
FM

→ 0

is uniform with respect to λ, whenever µ ∈ M1(Y ) is such that
∫
Y ∥ · ∥ dµ <∞.
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Using the above lemmas, as well as [Rud76, Theorem 7.11], we obatin the �rst of the main
results of the article [H3].

Theorem 4.8 (Theorem 5.2 in [H3]). Suppose that conditions (Λ1)�(Λ6) hold with constants
satisfying (21), and, for any λ ∈ [λmin, λmax], let µ

Φλ
∗ stand for the unique invariant probability

measure of Φλ (existing due to Theorem 4.4). Then, for every λ̄ ∈ [λmin, λmax], we have

µΦλ
∗

w→ µ
Φλ̄
∗ , as λ→ λ̄ (where the symbol �

w→� denotes weak convergence od measures, that is,

limλ→λ̄

∫
Y f dµ

Φλ
∗ =

∫
Y f dµ

Φλ̄
∗ for any f ∈ Cb(Y )).

The second main result then follows from Theorems 4.8 and 4.6.

Theorem 4.9 (Theorem 5.3 in [H3]). Let ϑ be a �nite Borel measure on Θ. Further, suppose
that conditions (Λ1)�(Λ6) hold with constants satisfying (21), and, for any λ ∈ [λmin, λmax],
let µΨλ

∗ stand for the unique invariant probability measure of Ψλ (existing due to Corollary

4.1). Then, for any λ̄ ∈ [λmin, λmax], we have µΨλ
∗

w→ µ
Ψλ̄
∗ , as λ→ λ̄.

Thanks to the results presented in [H3] (Theorems 4.8 and 4.9 above), we can
conclude that minor variations in the model parameter λ will have a negligible
impact on the stationary distribution of this model. This characteristic ensures
the suitability of the proposed abstract model for describing a wide range of real
phenomena.

[H4] A useful version of the central limit theorem for a general class of

Markov chains

Let (E, ρ) be a Polish metric space, and let dFM denote the Fortet-Mourier distance, de�ned
as in (18). The results of [H4] pertain to:

� the criterion for the geometric mixing property (in dFM) for a general class
of Markov chains (Section 2 in [H4]),

� the version of the CLT for a general class of Markov chains (Section 3 in [H4]),

� establishing the CLT for an abstract model of gene expression introduced in
[H2] (Section 4 in [H4]).

In Section 2 of [H4], we draw on certain ideas used in [Hai02, �11, Cza18, KS20] and
[D3]. The key results there are Lemmas 2.2 and 2.3, where the latter slightly strengthens the
exponential mixing property (in dFM) obtained and used in the proof of [KS20, Theorem 2.1].
Lemma 2.3 (which is a consequence of Lemma 2.2) is an essential tool in the proof of the main
result of [H4], that is, Theorem 3.2.

Let P : E ×B(E) → [0, 1] and P : M(E) → M(E) be a stochastic kernel and the Markov
operator induced by this kernel, respectively. We impose the following conditions on P :

(B0) The Markov operator P has the Feller property.

(B1) There exist a Lyapunov function V : E → [0,∞) and constants a ∈ (0, 1) and b ∈ (0,∞)
such that

PV (x) ≤ aV (x) + b for every x ∈ E.
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Moreover, we require that there is a substochastic kernel Q : E2 × B(E2) → [0, 1], satisfying

Q((x, y), A× E) ≤ P (x,A), Q((x, y), E ×A) ≤ P (y,A) for x, y ∈ E, A ∈ B(E), (22)

which enjoys the following properties:

(B2) There exist F ⊂ E2 and δ ∈ (0, 1) such that

suppQ((x, y), ·) ⊂ F and
∫
E2

ρ(u, v)Q((x, y), du× dv) ≤ δρ(x, y) for (x, y) ∈ F.

(B3) Letting U(r) = {(u, v) ∈ F : ρ(u, v) ≤ r}, r > 0, we have

inf
(x,y)∈F

Q ((x, y), U (δρ(x, y))) > 0.

(B4) There exist constants β ∈ (0, 1] and cβ > 0 such that

Q
(
(x, y), E2

)
≥ 1− cβρ

β(x, y) for every (x, y) ∈ F.

(B5) There exists a coupling (ϕ
(1)
n , ϕ

(2)
n )n∈N0 of P with transition law C ≥ Q (cf. Section 1.3

in [H4]) such that for some Γ > 0 and

K :=
{
(x, y) ∈ E2 : (x, y) ∈ F and V (x) + V (y) < Γ

}
we can choose γ ∈ (0, 1) and cγ > 0, for which

Ex,y(γ
−ρK ) ≤ cγ , whenever V (x) + V (y) < 4b(1− a)−1,

where
ρK = inf

{
n ∈ N : (ϕ(1)n , ϕ(2)n ) ∈ K

}
and Ex,y denotes the expectation operator w.r.t. Cx,y, that is, the appropriate measure
on B(E2) for which

Cx,y

((
ϕ(1)n , ϕ(2)n

)
∈ A× E

∣∣∣ϕ(1)n−1 = x
)
= P (x,A),

Cx,y

((
ϕ(1)n , ϕ(2)n

)
∈ E ×A

∣∣∣ϕ(1)n−1 = y
)
= P (y,A),

for any A ∈ B(E).

The desired lemma reads as follows:

Lemma 4.6 (Lemma 2.3 in [H4]). Suppose that P : E × B(E) → [0, 1] is a stochastic kernel
such that conditions (B0)�(B5) hold with some substochastic kernel Q : E2 × B(E2) → [0, 1]
satisfying (22). Then there exist constants q ∈ (0, 1) and c > 0 such that

Ex,y

∣∣∣g (ϕ(1)n

)
− g

(
ϕ(2)n

)∣∣∣ ≤ c∥g∥BL q
n(1 + V (x) + V (y)) (23)

for all (x, y) ∈ E2, g ∈ Lipb(E) and n ∈ N0.
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Let us now proceed to that part of article [H4] in which we establish the CLT for non-
stationary Markov chains evolving in Polish spaces.

Assume that µ∗ ∈ M1(E) is the unique invariant probability measure of P (which exists
under the assumptions of [KS20, Theorem 2.1]). For any given Borel function g : E → R such
that

∫
E g

2 dµ∗ < ∞, we say that the CLT holds for {ḡ(ϕn)}n∈N0 , where ḡ = g −
∫
E g dµ∗, if

the value

σ2(ḡ) = lim
n→∞

Eµ∗

((
ḡ(ϕ1) + . . .+ ḡ(ϕn)√

n

)2
)

(24)

is �nite and the averages n−1/2(ḡ(ϕ1) + . . .+ ḡ(ϕn)), n ∈ N, converge in law to a centered
normal random variable with variance σ2(ḡ).

Now, let D[0, 1] denote the Skorochod space, i.e., the collection of all cádlág functions on
[0, 1] (cf. [Bil99]). For any Borel function g : E → R, we introduce a process {Bn(g)}n∈N with
values in D[0, 1] by setting

Bn(g)(t) =
1√
n

(
g (ϕ1) + . . .+ g

(
ϕ⌈nt⌉

))
, 0 ≤ t < 1, and Bn(g)(1) = Bn(g)(1−)

for every n ∈ N, where ⌈a⌉ is the ceiling function of a ∈ R. For any given Borel function
g : E → R such that

∫
E g

r dµ∗ < ∞ for some r > 2, we say that {ḡ(ϕn)}n∈N0 satis�es the
Donsker invariance principle for the CLT (the functional CLT), if σ2(ḡ) <∞ and {Bn(ḡ)}n∈N
converges weakly to σ(ḡ)B in the space D[0, 1], where B is a standard Brownian motion on
[0, 1].

Before we formulate the main theorem, we need to strengthen condition (B1) to the fol-
lowing form:

(B1)′ There exist a Lyapunov function V : E → [0,∞) and constants a ∈ (0, 1) and b ∈ (0,∞)
such that

PV 2(x) ≤ (aV (x) + b)2 for every x ∈ E.

Obviously, due to the Hölder inequality, hypothesis (B1)′ implies (B1).

Theorem 4.10 (The CLT; Theorem 3.2 in [H4]). Suppose that P : E × B(E) → [0, 1] is
a stochastic kernel such that conditions (B0)�(B5) with (B1) strengthened to (B1)′ hold with
some substochastic kernel Q : E2 × B(E2) → [0, 1] satisfying (22). Further, let {ϕn}n∈N0 be
an E-valued time-homogeneous Markov chain with transition law P and initial distribution
µ ∈ MV

1,1(E), where V is a Lyapunov function appearing in (B1)′. Then the CLT holds for
{ḡ(ϕn)}n∈N0 whenever g ∈ Lipb(E). Moreover, if the initial distribution of {ϕ∗n}n∈N0 is equal
to the unique invariant measure of P , then {ḡ(ϕ∗n)}n∈N0 obeys the Donsker invariance principle
for the CLT.

An important step in the proof of Theorem 4.10 follows from [MW00, Corollary 1] and
[MW00, Corollary 4] by M. Maxwell and M. Woodroofe (cf. Lemma 3.1 in [H4]).
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Let us highlight that a thorough analysis of the proof of Theorem 4.10 shows that
its assertion remains valid under two more general (and simultaneously, much
more abstract) hypotheses, namely:

(i) conditions (B0) and either (B1) for both V and V 2 or (B1)′ are ful�lled;

(ii) there exists a Markovian coupling {(ϕ(1)n , ϕ
(1)
n )}n∈N0 of P for which condition

(23) is satis�ed.

In Section 4 of [H4] we indicate the usefulness of Theorem 4.10 by applying
it to prove the CLT for the chain Φ examined in [H2]. Importantly, none of the
existing versions of the CLT or the LIL, including those provided in [GHSZ19]
and [BMS12], were applicable in this context.

[H5] The Strassen invariance principle for certain non-stationary Markov-

Feller chains

The main results of [H5] are presented in Section 3, which is divided into two parts. The
�rst � contains some general observations concerning martingales de�ned on the path space
of a given ergodic Markov chain, while the second � presents the Strassen invariance principle
for the LIL for the class of non-stationary Markov-Feller chains. We only outline the latter here.

Let µ ∈ M1(E) be chosen arbitrarily, and suppose that P : E×B(E) → [0, 1] is a stochas-
tic kernel satisfying conditions (B0) and (B1) with the Lyapunov function V : E → [0,∞) of
the form V (x) = ρ(x, x̄) for x ∈ E, where x̄ is an arbitrarily �xed point of E. In what follows,
the chain governed by P with initial distribution µ will be denoted by {ϕn}n∈N0 . Moreover,
assume that there exists a substochastic kernel Q : E2 × B(E2) → [0, 1] satisfying (22) such
that conditions (B2)�(B5) hold for some F ⊂ E2. Under these settings, P possesses the unique
invariant probability measure µ∗ such that µ∗ ∈ MV

1,1 (due to [KS20, Theorem 2.1]), and also,
according to Lemma 4.6, condition (23) is ful�lled for some q ∈ (0, 1) and c ∈ (0,∞).

Now, let us de�ne C as a Banach space of all real-valued continuous functions on [0, 1]
with the supremum norm. By K we will denote the subspace of C consisting of all absolutely
continuous functions f such that f(0) = 0 and

∫ 1
0 (f ′(t))2 dt ≤ 1. Further, for any g ∈ Lipb(E)

and ḡ = g −
∫
E g dµ∗, we consider the sequence of random variables {rn(ḡ)}n∈N0 with values

in C, determined by

rn(ḡ)(t) :=

∑k−1
i=0 ḡ(ϕi) + (nt− k)ḡ(ϕk)

σ(ḡ)
√

2n ln(ln(n))
for n > e, t ∈ (0, 1]

and k ∈ {1, . . . , n− 1} s.t. k ≤ nt ≤ k + 1,

rn(ḡ)(t) := 0 for n ≤ e or t = 0.

(25)

For any given g ∈ Lipb(E), we say that the Markov chain {ḡ(ϕn)}n∈N0 satis�es the invari-
ance principle for the LIL if

0 < σ2 (ḡ) := Eµ∗

( ∞∑
i=0

P iḡ (ϕ1)−
∞∑
i=1

P iḡ (ϕ0)

)2
 <∞,
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the family {rn(ḡ)}n∈N0 is relatively compact in C, and the set of its limit points coincides
with K Pµ-a.s.

The main result of [H5] is formulated in the same spirit as [KS20, Theorem 2.1] and
Theorem 3.2 in [H4]. While hypotheses (B0)�(B5), together with (19), are su�cient for the
Markov operator P to be geometrically ergodic in dFM, our proof of the Strassen invariance
principle for the LIL additionally requires the following condition:

(B1∗) There exist a∗ ∈ (0, 1) and b∗ ∈ (0,∞) such that, for any ν ∈ MV
1,2+r(E),(∫

E
V 2+r d(Pν)

)1/(2+r)

≤ a∗
(∫

E
V 2+r dν

)1/(2+r)

+ b∗.

At this point, let us brie�y compare condition (B1∗) with (B1′), which has been employed in
[H4] to establish the CLT, and which is a stronger version of (B1). Condition (B1∗) is of the
same type, although, in general, it does not need to imply (B1). Consequently, in Theorem
4.7 in [H5] we assume both (B1) and (B1∗).

Theorem 4.11 (The Strassen invariance principle for the LIL; Theorem 4.7 in [H5]). Suppose
that {ϕn}n∈N0 is an E-valued time-homogeneous Markov chain with transition law P and initial
distribution µ such that µ ∈ MV

1,2+r(E) for some r ∈ (0, 2). Further, assume that there exists

a substochastic kernel Q : E2 × B(E2) → [0, 1] satisfying (22), such that conditions (B0)�(B5)
and (B1∗) hold for P and Q with some F ⊂ E2. Then, for any g ∈ Lipb(E) such that σ2(ḡ) > 0
(e.g., g ∈ Lipb(E) that is not constant µ∗-a.e.; the �niteness of σ

2(ḡ) is established in Lemmas
4.9 and 4.10 in [H5]), the chain {ḡ(ϕn)}n∈N0 obeys the Strassen invariance principle for the
LIL.

The techniques that we use to prove Theorem 4.11 are mainly based on those employed in
[BMS12] and [D1], which, in turn, refer to the martingale result by C.C. Heyde and D.J. Scott
[HS73].

Analyzing the proof of Theorem 4.11 shows that its assertion remains valid
under two more general (and simultaneously, much more abstract) hypotheses,
namely:

(i) condition (B0) and (B1∗) are ful�lled;

(ii) there exists a Markovian coupling {(ϕ(1)n , ϕ
(2)
n )}n∈N0 of P for which condition

(23) is satis�ed.

It is, however, worth noting that, rather than verifying condition (ii) directly,
it is often much easier to verify the assumptions of Theorem 4.11 (or those of
Theorem 4.10). In fact, for explicitly de�ned random dynamical systems (such
as those in [H2] or [KS20] concerning a random IFS with an arbitrary set of
transformations), it is quite intuitive how to de�ne Q (cf. Eq. (6.9) in [H2] or the
proof of [KS20, Proposition 3.1])).

The functional LIL for the chain Φ, studied in [H2], is established in Section 5 of [H5].
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[H6] The law of the iterated logarithm for random interval homeomorphisms

Let (f1, . . . , fN ; p1, . . . , pN ) be an admissible IFS. Moreover, let Σ = {1, . . . , N}N be equipped
with the product topology induced by the discrete topology on {1, . . . , N}. For every n ∈ N,
de�ne

fnω = fωn ◦ . . . ◦ fω1 = f(ω1,...,ωn) for any ω = (ω1, ω2, . . .) ∈ Σ.

By P we denote the measure on Σ, which is the product measure of the probability vector
(p1, . . . , pN ). By abuse of notation, we shall also write P for the product measure of the
probability vector (p1, . . . , pN ) on Σn = {1, . . . , N}n for n ∈ N.

Now, let {Xn}n∈N0 be the Markov chain, corresponding to the admissible IFS (f1, . . . , fN ;
p1, . . . , pN ), with transition probability function P , given by (15), de�ned on the coordinate
space ([0, 1]N,B([0, 1]N)), equipped with an appropriate collection {Pν}ν of probability mea-
sures on B([0, 1]N) such that Pν(Xn+1 ∈ A|Xn = x) = P (x,A) and Pν(X0 ∈ A) = ν(A) for
any probability measure ν on [0, 1]. For ν = δx, x ∈ [0, 1], let us simply write Px.

Note that for n ∈ N and A1, . . . , An ∈ B([0, 1]) we have

Px ((X1, . . . , Xn) ∈ A1 × . . .×An)

=
∑

(ω1,...,ωn)∈Σn

1A1×...×An

(
fω1(x), . . . , f(ω1,...,ωn)(x)

)
pω1 . . . pωn

=

∫
Σn

1A1×...×An

(
fω1(x), . . . , f(ω1,...,ωn)(x)

)
P (dω1 × . . .× dωn)

=

∫
Σ
1A1×...×An

(
f1ω(x), . . . , f

n
ω (x)

)
P (dω) .

By [CS20, Theorems 1 and 2] we know that the regular Markov operator P (induced by
(15)) has the unique invariant probability measure µ∗ on (0, 1). In the case where the initial
distribution of {Xn}n∈N0 is its stationary distribution µ∗, we will write {X∗

n}n∈N0 .

The two main results of [H6] read as follows:

Proposition 4.1 (The annealed LIL; Proposition in [H6]). If φ : [0, 1] → R is a Lipschitz
function satisfying

∫
[0,1] φdµ∗ = 0, then there exists a constant σ ∈ [0,∞) such that

lim sup
n→∞

φ (X∗
1 ) + . . .+ φ (X∗

n)√
2n ln(ln(n))

= σ Pµ∗-a.s.

Theorem 4.12 (The quenched LIL; Theorem in [H6]). If φ : [0, 1] → R is a Lipschitz function
satisfying

∫
[0,1] φdµ∗ = 0, then there exists a constant σ ∈ [0,∞) such that for every x ∈ (0, 1)

lim sup
n→∞

φ
(
f1x(x)

)
+ . . .+ φ (fnx (x))√
2n ln(ln(n))

= σ P-a.s.

Given the extensive body of research by many mathematicians on the model
discussed in [H6], the importance of a fundamental result such as the LIL shall be
properly appreciated.
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4.4 Description of the applicant's contribution to each work comprising
the achievement, set out in art. 219 para 1. point 2 of the Act

Article [H1]

R. Kukulski, H. Wojewódka-�ci¡»ko,
The e-property of asymptotically stable Markov-Feller operators,
Colloq. Math. 165 (2021), 269�283

The results were established while my co-author R. Kukulski was preparing his master's
thesis under my supervision. I suggested the topic of the work, and R. Kukulski provided
examples, described in Section 4 of the article. We both contributed equally to proving the
main theorems. The initial draft of the paper was written by R. Kukulski and later revised
by me. I added Section 1 and made signi�cant corrections in the subsequent sections.

Article [H2]

D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko,
Ergodic properties of some piecewise deterministic Markov process with applica-

tion to gene expression modelling,
Stoch. Proc. Appl. 130 (2020), no. 5, 2851�2885

K. Horbacz initiated this project and proposed the overall structure of the model under
consideration. Drawing from my PhD expertise, I was able to thoroughly understand the proof
of the criterion by R. Kapica and M. �l¦czka [KS20, Theorem 2.1]. As a consequence, I was able
to provide assistance to D. Czapla in establishing one of our main results, Theorem 4.1, whose
proof extensively relies on the utilization of this criterion. I also made signi�cant contributions
to the proofs of Theorems 4.2�4.7. D. Czapla originated Section 3, addressing the validity of
the assumptions made. K. Horbacz suggested Example 5.1, describing prokaryotic (bacterial)
gene expression, while I proposed Example 5.2, which pertains to auto-regulated gene be-
haviour in bacteria. After consulting with S.C. Hille, I enhanced the biological interpretation
in Example 5.1, emphasizing that genes in prokaryotes can (and frequently are) organised in
the so-called operons. D. Czapla initially drafted the article, which was subsequently reviewed
and completed by K. Horbacz and myself. I am the author of the Introduction.

Article [H3]

D. Czapla, S.C. Hille, K. Horbacz, H. Wojewódka-�ci¡»ko,
Continuous dependence of an invariant measure on the jump rate of a piecewise

deterministic Markov process, Math. Biosci. Eng. 17 (2020), no. 2, 1059�1073

We obtained the results described in the article while I was carrying out my research
project Mathematical Modelling with Measures funded by the National Science Centre under
the registration number 2018/02/X/ST1/01518. This project provided me with the opportu-
nity to conduct a research visit to the Mathematical Institute at Leiden University in December
2018. The main ideas emerged during my stay in Leiden, where I collaborated with S.C. Hille.
Together, we formulated the research hypothesis and prepared the proof outline. Upon my re-
turn, in collaboration with D. Czapla and K. Horbacz, I re�ned all the details and subsequently
wrote the article (with the assistance of D. Czapla).
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Article [H4]

D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko,
A useful version of the central limit theorem for a general class of Markov chains,
J. Math. Anal. Appl. 484 (2020), no. 1, 123725

I was the project's main coordinator and driving force. The sketch of the proof of the
main result of this paper was proposed by me. Drawing on my previous experience, I noticed
that the desired version of the central limit theorem can be proven by creatively applying
the asymptotic coupling techniques, introduced and developed by M. Hairer (since 2002).
The lemma essential to the proof of this theorem was demonstrated by D. Czapla (with my
assistance). I wrote the article, while D. Czapla and K. Horbacz made the necessary revisions
to the proofs and performed some text editing.

Article [H5]

D. Czapla, K. Horbacz, H. Wojewódka-�ci¡»ko,
The Strassen invariance principle for certain nonstationary Markov-Feller chains,
Asymptot. Anal. 121 (2021), no. 1, 1�34

The core ideas presented in this paper were conceived by me. The inability to directly
apply a version of the law of the iterated logarithm by W. Boªt, A.A. Majewski and T. Szarek
[BMS12] to a wide class of random dynamical systems, which we investigated in our previous
papers and which are applicable, e.g., in molecular biology, motivated me to establish a new
criterion. It was my suggestion to utilize certain techniques based on the construction of an
asymptotic Markovian coupling in the proof, in addition to employing a martingale method. I
initially drafted the paper, which was then reviewed by D. Czapla and K. Horbacz. D. Czapla
completed certain proofs, particularly those pertaining to several general observations con-
cerning martingales (included in the Appendix).

Article [H6]

K. Czudek, T. Szarek, H. Wojewódka-�ci¡»ko,
The law of the iterated logarithm for random interval homeomorphisms,
Isr. J. Math. 246 (2021), 47�53

The work was conducted during the period when K. Czudek was preparing his doctoral
dissertation under the supervision of T. Szarek. After establishing the central limit theorem
for certain admissible iterated function systems [CS20], K. Czudek and T. Szarek aimed to
further prove the law of the iterated logarithm for them. Leveraging my experience and
knowledge of the literature on the law of the iterated logarithm, I suggested (during a scienti�c
discussion with T. Szarek) that the appropriate utilization of the criterion by O. Zhao and
M. Woodroofe [ZW08] could lead to the desired result. We jointly veri�ed and con�rmed
my idea. Importantly, K. Czudek provided justi�cation for why the considered process can
be extended bidirectionally. The initial version of the article was drafted by K. Czudek.
Subsequently, T. Szarek and I made necessary revisions, amendments, and completed the
details of the proof.
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5 Description of the results from articles not related to the topic
of the scienti�c achievement

5.1 List of scienti�c articles

Latest result (paper under review)

[R1] H. Wojewódka-�ci¡»ko, Z. Puchaªa, K. Korzekwa, Resource engines, under review in
Quantum, arXiv:2304.09559 [quant-ph] (2023), DOI 10.48550/arXiv.2304.09559.

The results on randomness ampli�cation obtained during the postdoctoral intern-
ship at the National Quantum Information Centre in Gda«sk

[Q1] H. Wojewódka, F.G.S.L. Brandão, A. Grudka, K. Horodecki, M. Horodecki, P. Horodecki,
M. Pawªowski, R. Ramanathan, M. Stankiewicz, Amplifying the randomness of weak
sources correlated with devices, IEEE Trans. Inf. Theory. 63 (2017), no. 11, 7592�7611,
DOI 10.1109/TIT. 2017.2738010.

[Q2] R. Ramanathan, F.G.S.L. Brandão, K. Horodecki, M. Horodecki, P. Horodecki,
H. Wojewódka, Randomness ampli�cation under minimal fundamental assumptions on
the devices, Phys. Rev. Lett. 117 (2016), no. 23, 230501,
DOI 10.1103/PhysRevLett.117. 230501.

[Q3] F.G.S.L. Brandão, R. Ramanathan, A. Grudka, K. Horodecki, M. Horodecki,
P. Horodecki, T. Szarek, H. Wojewódka, Realistic noise-tolerant randomness ampli�-
cation using �nite number of devices, Nat. Commun. 7 (2016), no. 11345,
DOI 10.1038/ncomms11345.

5.2 Description of the results

5.2.1 Introduction

In connection with the implementation of interdisciplinary research projects focused around
quantum information theory, that is

� the European grant Randomness and Quantum Entanglement (during my internship
at the National Quantum Information Centre in Gda«sk in the years 2013�2016)

� and the FNP TEAM-NET grant Near-term Quantum Computers: Challenges, optimal
implementations and applications (during my internship at the Institute of Theoretical
and Applied Informatics of the Polish Academy of Sciences in Gliwice),

my research interests also concern the application of some probabilistic methods in
quantum information theory (including random number generation, randomness
ampli�cation, quantum cryptography, as well as quantum resource theories or
quantum thermodynamics).
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In the next section, I will describe my latest results on resource engines [R1] (the concept of
resource engines has been recently introduced to the literature by me, prof. dr hab. Zbigniew
Puchaªa and dr hab. Kamil Korzekwa, with whom I am still working on this topic) and on
randomness ampli�cation (a series of articles [Q1]�[Q3] was prepared jointly with a group of
scientists led by prof. dr hab. Michaª Horodecki, with whom I continue to share some future
research plans, this time on quantum thermodynamics).

5.2.2 Overview of the results

The results on resource engines

Given how fruitful the thermodynamic inspirations have been so far for quantum resource
theories, in [R1] we aim at pushing this analogy one step further. In contrast to current
approaches focused on scenarios with one set of constrained free operations (inspired by the
access to a single heat bath), we propose to investigate the performance of resource engines,
which generalise the concept of heat engines by replacing the access to two heat baths at
di�erent temperatures with two arbitrary constraints on state transformations.

More precisely, we consider two agents (traditionally refereed to as Alice and Bob), each
of which is facing a di�erent constraint, meaning that each of them can only prepare a subset
of free states, FA and FB, and can only perform quantum operations from a subset of free
operations, FA and FB. Now, the idea is to imitate the action of a two-stroke heat engine:
instead of subsequently connecting the system to the hot and cold bath, it is sent to Alice and
Bob in turns and they can perform any operation on it from their constrained sets FA and
FB. Since the free states and operations of Alice will generally be resourceful with respect
to Bob's constraints (and vice versa), a number of such communication rounds with locally
constrained operations (i.e., strokes of a resource engine) may generate quantum states outside
of FA and FB. Thus, by fusing two resource theories described by (FA,FA) and (FB,FB),
one can obtain a new resource theory with free operations FAB ⊇ FA ∪ FB and free states
FAB ⊇ FA ∪ FB.

A number of natural questions then arise. First: Can a resource engine de�ned by given two
constraints generate a full set of quantum operations, or at least approach every element of this
set arbitrarily well with the number of strokes going to in�nity?. Alternatively: Can it achieve
all possible �nal states starting from states belonging to FA or FB?. If the answer to any of
these questions is yes, then further questions arise, for instance: Can we bound the number of
strokes needed to generate every operation or state?, and also: If there exists a state that is
maximally resourceful with respect to both Alice's and Bob's constraints, what is the minimal
number of strokes needed to create it?. Note that given that each stroke takes a �xed amount
of time, this e�ectively corresponds to studying the optimal power of a resource engine. One
can also ask about the equivalent of engine's e�ciency. Namely, whenever Bob gets a state
from Alice and transforms it using an operation from FB, he necessarily decreases the resource
content of the state with respect to his constraint, but may increase it with respect to Alice's
constraint. Thus, one may investigate the optimal trade-o�, i.e., the e�ciency of transforming
his resource into Alice's resource.

The main motivation behind introducing and investigating the resource engine
was due to the fact that it provides a natural way of fusing two (or more) resource
theories, in the spirit of recent works on multi-resource theories [1]. In a sense, it
allows one to study how compatible various constraints on allowed transformations
are. In [R1] we start this kind of research by introducing ideas and analysing toy
examples, but we hope that a formal mathematical framework allowing for fusing
arbitrary resource theories can be developed. Two potential ways to achieve this could
be to extend to multiple resources the framework of general convex resource theories [2], or to
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quantify resource-dependent complexity of quantum channels [3].
In Section II in [R1], we analyze a resource-theoretic perspective on standard heat

engines. Alice and Bob are constrained to having access to heat baths at di�erent temper-
atures α and β (β < α). Thus FA and FB are the sets of thermal operations with inverse
temperatures α and β, respectively, and the corresponding sets of free states are FA = {γ}
and FB = {Γ}, where

γk =
e−αEk∑d
i=1 e

−αEi
, Γk =

e−βEk∑d
i=1 e

−βEi
,

and {Ei} denotes the energy levels of the system. We �rst fully describe an elementary example
of a two-level system. Then, given athermality engines with arbitrary d-dimensional systems,
we lower and upper bound the set of achievable states FAB (see Corollary 2 and
Proposition 5 in [R1]). Finally, we prove that the set FAB of free states arising from
fusing two resource theories of thermodynamics, one with �nite temperature β
and the other with in�nite temperature α, is given by the full probability simplex.
Moreover, the convergence to the full simplex (with the number of strokes) is
exponential.

Section III is devoted to the concept of unitary coherence engines. Alice and Bob
are constrained to only performing unitary operations diagonal in their �xed bases, so that
coherence with respect to these bases is a resource for them. More formaly, the sets of free
states are given by

FA = {|i⟩}di=1, FB = {U †|i⟩}di=1,

where U is a �xed unitary matrix over the �eld C describing the relative orientation of the two
bases. The sets FA and FB of free operations are then unitaries diagonal in the distiguished
bases. Again, we �rst investigate the simplest case of a two-level system. Referring to the
papers [4, 5, 6] on generating the rotation group, we observe that Alice and Bob can, by means
of a resource engine, generate any unitary matrix of order 2, with ⌈π/α⌉+ 1 strokes, and any
pure quantum state, with ⌈π/2α⌉+ 1 strokes. Then we proceed to a general case of a d-level
system and discuss the conditions under which the full set of unitary operations
can be performed jointly by Alice and Bob, i.e., when FAB becomes the full set
of unitary operations. Namely, we prove (in Theorem 9 in [R1]) that if for U , appearing in
the de�nition of FB, there exists a constant M ∈ (0,∞) such that the corresponding matrix
(P T

U PU )
M , with PU = [pij ]

d
i,j=1 given by

pij =

{
0 for uij = 0
1 for uij ̸= 0

,

has all non-zero entries, then any unitary matrix can be written as a product comprised of
unitary matrices from FA and from FB. In the proof we refer to the results concerning sub-
groups of the unitary group that contain the group of diagonal matrices (see [7]). Later, in
Propositions 11 and 12, we analyse the number of strokes N needed to get all these
operations, presenting both lower and upper bounds for N . Finally, we discuss the
problem of using the resource engine to produce a state that is simultaneously maximally
resourceful for both Alice and Bob (cf. Section III E).
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In the end, let us point out that the resource engine perspective may provide a uni�ed
framework to study seemingly unrelated problems within the �eld of quantum information. For
instance, our toy example of unitary coherence engines can be directly related to the problem
of compiling universal quantum circuits via Hamiltonian control (see, e.g., [8, 9, 10]). Thus,
the results on resource engines could be, e.g., applied to optimise quantum control and circuit
compilation. Moreover, a similar connection can be made with the problem of performing
arbitrary optical linear transformations [11, 12] (e.g., Alice can be restricted to performing
only phase masks, while Bob can only perform Fourier transforms or beam splitters). We
elaborate more on potential uses of resource engines in Section IV of [R1].

The results on randomness ampli�cation

Randomness is a fundamental concept, with implications from security of modern data sys-
tems, to fundamental laws of nature and even the philosophy of science. Randomness is
called certi�ed if it describes events that cannot be pre-determined by an external adversary.
Traditional random number generators are based on classical physics, which is deterministic.
Therefore, the output randomness cannot be trusted without further assumptions.

In view of that, computer scientists have considered the weaker task of amplifying im-

perfect randomness. Overall, the idea is to use the inputs from a somewhat random, but
potentially almost deterministic, source and obtain perfectly random output bits (where by
perfectly random we mean uniformly distributed and independent of each other). In classical
information theory, randomness ampli�cation from a single weak source is unattainable ([13]).
However, it becomes possible, if the no-signaling principle is assumed and quantum-mechanical
correlations are used (see, e.g. [14]). Such correlations are revealed operationally through the
violation of Bell inequalities.

As a model of a weak source to be ampli�ed, we consider an ε-SV source (named after
M. Santha and U. Vazirani [13]), where ε is a parameter which indicates how far we are from
full randomness. An ε-SV source is given by a probability distribution P over bit strings such
that

(0.5− ε) ≤ P(φ1 = x1|e) ≤ (0.5 + ε),

(0.5− ε) ≤ P(φi+1 = xi+1|φ1 = x1, . . . , φi = xi, e) ≤ (0.5 + ε)
(26)

for every i ≥ 1 and all x1, . . . , xi+1 ∈ {0, 1}, where e represents an arbitrary random variable
prior to φ1, which can in�uence the distributions of φ1, . . . , φn, . . .. Note that, when ε = 0,
bits are fully random, while they can be even fully deterministic when ε = 0.5.

For a long time it was unclear whether randomness ampli�cation (RA) is a realistic task, as
the proposals (existing at that moment) either did not tolerate noise or required an unbounded
number of di�erent devices.

In [Q3] we provide an error-tolerant protocol using a �nite number of devices Summary
of [Q3].for amplifying arbitrary weak randomness into nearly perfect random bits, which

are secure against a no-signalling adversary. The correctness of the protocol is
assessed by violating a Bell inequality, with the degree of violation determining
the noise tolerance threshold. In the proofs we combine results from the classical theory
of extractors (cf. [15, 16, 17], the recently discovered information-theoretic approach to the
de Finetti theorem [18] and the Azuma�Hoe�ding inequality [19].
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Our paper [Q3] has been cited 37 times and has inspired several signi�cant results. For
example, the authors of [20], drawing heavily on the ideas presented in [Q3] and those in [21],
recently developed an end-to-end and practical randomness ampli�cation and privatization
protocol based on Bell tests. Remarkably, they demonstrated the protocol on various quantum
computers, despite them not being speci�cally designed for this purpose. This semi-device-
independent approach allowed the protocol to generate (near-)perfectly unbiased and private
random numbers on today's quantum computers.

On the other hand, for reasons of practical relevance, the crucial question is Summary
of [Q2].whether cryptographically secure random bits can be produced under the minimal

conditions necessary for the task, that is, using only two nonsignaling components
and in a situation where the violation of a Bell inequality only guarantees that
some outcomes of the device for speci�c inputs exhibit randomness. The question
is yes and it is answered in [Q2]. More precisely, we present a device-independent protocol
for RA of SV sources using a device consisting of two nonsignaling components. We show that
the protocol can amplify any such source that is not fully deterministic into a fully random
source while tolerating a constant noise rate and prove the composable security of the protocol
against general no-signaling adversaries. Our main innovation is the proof that even the partial
randomness certi�ed by the two-party Bell test (a single input-output pair (u∗,x∗) for which
the conditional probability P(x∗|u∗) is bounded away from 1 for all no-signaling strategies
that optimally violate the Bell inequality) can be used for ampli�cation. We introduce the
methodology of a partial tomographic procedure on the empirical statistics obtained in the Bell
test that ensures that the outputs constitute a linear min-entropy source of randomness. As a
technical novelty that may be of independent interest, we prove that the SV source satis�es an
exponential concentration property given by a recently discovered generalized Cherno� bound.

In [Q1] we focus on the possibility of enhancing the randomness of sources by means of Summary
of [Q1].devices dependent on them (ensuring complete independence of the device from the source

is di�cult to implement in practice). Instead of requiring a source and a device to be inde-
pendent, we only limit the correlations between them by one constraint, which we call the
SV-condition for boxes (for details see Section IV B in [Q1]). We prove the protocol's
security (see Section VII and Figure 6 in [Q1], where the protocol is presented)
against a certain class of attacks using correlations between the source and the de-
vice (in the context of a �nite device framework against a no-signaling adversary).
More precisely, we prove explicitly that the most malicious correlations (between a source and
a device) are not allowed due to the assumption that an ε-SV source remains an ε-SV source
even upon obtaining the inputs and outputs from boxes. Hence, randomness ampli�cation is
still possible. Our new method of proof allows to analyze an attack where an adversary sends
to the honest parties those boxes that are particularly adapted to their measurement settings,
as well as to the hashing function applied. We explain the dangers of such attacks with an
explicit example in Section III of [Q1].

Let us here indicate that other researchers have also attempted to relax the independence
assumption. The authors of [22] approach the problem using a quantum formalism, while
those in [23], which was announced after the initial version of ([Q1]), demonstrate (in the
same spirit) security against no-signaling adversaries, albeit with a greater number of devices.
Our approach is di�erent and independent of those proposed in [22] and [23]. We believe that
the results presented in our paper [Q1] o�er a novel perspective on randomness ampli�cation
and, due to the transparency of the assumptions, are also signi�cant in the broader context of
obtaining secure cryptographic key bits.
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6 Presentation of signi�cant scienti�c activity carried out at
more than one university or scienti�c institution, especially
at foreign institutions

Institute of Mathematics, University of Silesia in Katowice
(permanent position)

In October 2016, I started working at the Institute of Mathematics of the University of
Silesia in Katowice (IM U�). I am still an assistant professor there, conducting research on
asymptotics and ergodic properties of certain Markov dynamical systems (see, e.g., [H2]�[H5]
or [E2]�[E4]).

Invitations to present talks and lectures at various conferences, both nationally and inter-
nationally, including

� the international conference Mathematical Modeling with Measures: Where Ap-

plications, Probability and Determinism Meet (Leiden, 3�7 December 2018; in-
vited talk: Useful versions of limit theorems for certain non-stationary Markov chains),

� The 17th Conference on Probability Theory (XVII Konferencja z Probabilistyki,
B¦dlewo, 22�26 May 2023; plenary lecture: Central limit theorem for Markov processes
which are exponentially ergodic in the Fortet�Mourier norm),

as well as during the seminars of the Institute of Mathematics, Polish Academy of Sciences
(IMPAN) in Warsaw (15 April 2019 � the seminar on Di�erential Equations; 28 March 2023
� the seminar on Stochastic Processess), serve as an acknowledgment of strong recognition
of my scienti�c contributions. Overall, I have given talks at 10 international mathematical
conferences, including the Bernoulli-IMS 10th World Congress in Probability and

Statistics (Seoul, 19�23 July 2021).

From 2 March 2020 to 31 May 2021, I had a break in my scienti�c activity, initially
due to incapacity for work, followed by maternity and parental leaves.

From 1 October 2021 to 30 June 2023, I was on an unpaid leave at the University of Silesia
in Katowice (at that time I was involved in the implementation of research projects at the
Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences in Gliwice).

Institute of Theoretical and Applied Informatics, Polish Academy
of Sciences (postdoctoral fellowship)

In September 2019, I was invited by prof. dr hab. Zbigniew Puchaªa, the leader of theQuantum
Machine Learning group in the project Near-term Quantum Computers: Challenges,

optimal implementations and applications (grant number: POIR.04.04.00-00-17C1/18-
00, the TEAM-NET grant funded by the Foundation for Polish Science), to collaborate on
this project. In December 2019, I took on additional employment (half-time position) at the
Institute of Theoretical and Applied Informatics of the Polish Academy of Sciences
(IITiS PAN) in Gliwice.
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In the period from 1 October 2021 to 30 June 2023, when I was on an unpaid leave at the
University of Silesia in Katowice, my working time in the TEAM-NET project was increased
to full-time. Additionally, I was employed in the project of dr hab. Bartªomiej Gardas,
entitled Simulations of physical systems with near-term annealing technology (grant number:
2020/38/E/ST3/00269, Sonata BIS 10 grant funded by the National Science Center).

During that time, I became particularly interested in the theory of quantum resources
and established an intensive scienti�c cooperation with dr hab. Kamil Korzekwa from the
Faculty of Physics, Astronomy and Applied Computer Science at the Jagiellonian
University in Kraków. The e�ect of this collaboration is the article [R1], which I have
already promoted at the following international conferences:

� Quantum Resources: from Mathematical Foundations to Operational Characterization
(Singapore, 5�8 December 2022),

� Near Term Quantum Computing 2020(+3) (Warsaw, 22�24 March 2023)

� and 14th KCIK-ICTQT Symposium on Quantum Information (Sopot, 18�20 May 2023,
invited talk).

Our ideas were enthusiastically received by the participants of these conferences.

Mathematical Institute, Leiden University
(long-term international cooperation and internships)

From 9 December to 14 December 2013, and from 15 December to 19 December 2014, I had my
�rst study visits to the Mathematical Institute at Leiden University (MI LU), thanks
to which I established an intensive scienti�c cooperation with Dr. Sander C. Hille. Our
joint research resulted in the publication of the articles [D1] and [D2], as well as subsequent
invitations to MI LU.

During the spans of 18 June � 18 July 2017 and 30 January � 1 March 2018, I completed
two month-long internships, the latter of which was �nanced by the Outgoing Scholarship,
awarded to me under the START FNP 2017 program. Further, shorter visits to MI LU took
place during 2�18 December 2018 and 3�12 February 2019, as part of the implementation of
the Miniatura NCN project and Small Grant from the Rector of the University of Silesia in
Katowice (Maªy Grant Rektora Uniwersytetu �l¡skiego w Katowicach), respectively.

The scienti�c cooperation with Dr. Sander C. Hille in the years 2017�2019 has resulted in
the publications [H3] and [E4], in which we establish certain properties of invariant measures
and the law of the iterated logarithm for the considered class of piecewise deterministic Markov
processes, respectively.

Finally, from 31 August to 30 November 2022, I undertook a three-month foreign in-
ternship at MI LU, during which, together with Dr. Sander C. Hille, we initiated an entirely
new project focusing on convergence rates to stationary distributions in certain Monte Carlo
simulations. We also extended the collaboration to include Dr. Joris Bierkens from the Delft
University of Technology, whom I had the opportunity to meet at the mini-symposia
Markov operators and dynamical systems in spaces of measures organized during my stay in
Leiden. These research e�orts continue today.
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Institute of Theoretical Physics and Astrophysics, University of Gda«sk;
National Quantum Information Centre in Gda«sk
(postdoctoral fellowship)

In October 2013, while still a PhD student, I started working as an assistant (researcher)
in the Institute of Theoretical Physics and Astrophysics, University of Gda«sk
(IFTiA UG), with a secondment to work at the National Quantum Information Centre
in Gda«sk (KCIK), where, under the supervision of prof. dr hab. Michaª Horodecki, I im-
plemented the European grant Randomness and Quantum Entanglement (acronym
RAQUEL, project number 323970, the Seventh Framework Program of the European Union).
After completing doctoral studies and obtaining a doctoral degree (in July 2015), I continued
my employment at IFTiA UG (and KCIK), as a postdoctoral research fellow, until the
end of September 2016. During this period, I dealt with the problem of randomness genera-
tion, which is important, among others, from a cryptography perspective. The outcome of my
research consists of three publications [Q1]-[Q3].

Participation in the project Randomness and Quantum Entanglement gave me the opportu-
nity to work within an international and interdisciplinary team consisting of physicists, mathe-
maticians, and computer scientists. Between the years 2013 and 2015, the project contributors,
i.e. employees of the Masaryk University in Brno, the Swiss Federal Institute of Technology in
Zürich, the Free University of Berlin, the Autonomous University of Barcelona, the University
of Latvia and the University of Gda«sk, met every year at conferences RAQUEL Scienti�c

Meeting, hosted successively in Brno, Barcelona and Sopot (with the �nal conference
co-organized by me and dr Piotr �wikli«ski). During these meetings, we presented our results,
engaged in discussions on open research issues, and fostered productive exchanges within the
team.

During that period, I also had the opportunity to undertake several scienti�c visits, includ-
ing visits to the Institute of Physics at Adam Mickiewicz University in Pozna« (on
12�16 May 2014 and from 8�11 September 2014 � in cooperation with prof. dr hab. Andrzej
Grudka, which resulted in the publications [Q1] and [Q3]) or to the Institute of Theoretical
Physics of the Swiss Federal University of Technology in Zürich (on 6�12 Decem-
ber 2015 � for scienti�c consultation with Prof. Dr. Renato Renner and his research group,
regarding the work [Q1]). Moreover, I participated in numerous international conferences,
workshops, and seminars, including those held in Sydney, Barcelona, Seefeld, Washington,
and Berlin, where I presented and promoted the results of my research.

While preparing the publications [Q1]-[Q3], I established scienti�c cooperation with Prof.
Fernando G.S.L. Brandão from the California Institute of Technology (Caltech) (formerly
from the Miscrosoft and the University College London).

At the end of the postdoctoral fellowship at KCIK in Gda«sk, I was honored with an
invitation to deliver a presentation entitled Towards realistic randomness ampli�cation during
the Symposium KCIK (Sopot, 22�24 May 2016). Additionally, I was invited by the program
committee of the 44th Polish Physics Congress (Wrocªaw, 10�15 September 2017) to
present the results from the series of works [Q1]�[Q3]. I was also invited to give lectures at the
seminar Chaos and Quantum Information, organized by the Quantum Optics Division of the
Jagiellonian University in Kraków (Kraków, 13 November 2017), as well during the conference
Quantum Foundations and Beyond (Sopot, 8�9 December 2017).
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In 2017, I received a foreign scholarship from the Henri Poincaré Institute (IHP)
in Paris, which enabled me to participate in the program T3-2017 Analysis in Quantum
Information Theory held at the IHP in Paris (this included a month-long research visit,
from 19 November to 17 December 2017, during which I presented my results at the Main
Conference Quantum Information Theory, IHP Trimester).

Institute of Mathematics, University of Gda«sk (doctoral studies)

In October 2011, I started the Environmental Doctoral Studies in Mathematics and Computer
Science at the Institute of Mathematics, University of Gda«sk, and I completed them in
July 2015. Throughout this period, my interests were focused primarily on the analysis of some
random dynamical system, used, among others, to describe the process of cell division (see
[D1]�[D3]). I promoted my results by giving talks at the conferences, including, international
conferences such as the CNRS-PAN Mathematics Summer Institute in Kraków in 2013 and
2015.

7 Presentation of teaching and organizational achievements, as
well as achievements in popularization of science

Teaching achievements

Conducting lectures and exercises

� In the academic year 2021/2022, I conducted an online lecture entitled Probability and
Statistics (in English) for students of the Master's program in Quantum Informa-

tion Technology, run by the University of Gda«sk.

� From October 2016 to February 2020, I conducted numerous lectures and classes at
the Faculty of Science and Technology of the University of Silesia in Katowice
(according to my annual teaching load of 210 hours), including courses such as Intro-
duction to Probability Theory, Probability Theory, Elements of Statistics, Fundamentals
of Probabilistic Methods and Statistics, Introduction to Computer Science, as well as
Problem Workshops, Diploma Seminars, and Master's Laboratory.

� In the academic year 2015/2016, I conducted lectures on Stochastic Di�erential Equa-
tions and Applications of Semi-Markov Processes at the Department of Probabil-
ity Theory and Biomathematics, Faculty of Technical Physics and Applied
Mathematics, Gda«sk University of Technology.

Supervising students

� I was the supervisor of two master's theses defended in 2019 (Base Norm in the
Problem of Quantum Measurements Discrimination by Paulina Lewandowska, and Some
Asymptotic Properties of Markov Operators by Ryszard Kukulski, which received dis-
tinction).

� I was the supervisor of seven bachelor's theses, defended in 2019 (by Paulina Gam-
rat, Maªgorzata Kubicka and Natalia Czerniszew) and in 2017 (by Agata Dytkowska,
Katarzyna Chmura, Ryszard Kukulski and Agata Malisz).
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Organizational achievements

� I co-organized (together with prof. dr hab. Katarzyna Horbacz and dr Dawid Czapla)
the �rst two editions of the Microconference on Stochastic Processes (Katowice,
6�7 June 2023 and 20�22 June 2022).

� I was a member of the Scienti�c Council of the Institute of Mathematics of the
University of Silesia in Katowice in the academic years 2020/2021 and 2021/2022.

� I was a member of the Teaching Council for Mathematics at the Faculty of Science
and Technology of the University of Silesia in Katowice in the academic year 2019/2020.

� In the years 2015 and 2016, I was co-running (together with dr Paweª Mazurek) the
website of the National Quantum Information Centre in Gda«sk.

� I co-organized (together with dr Piotr �wikli«ski) the international conference 3rd

RAQUEL Scienti�c Meeting (Sopot, 8�9 October 2015).

Achievements in popularization of science

� I prepared and conducted the XXXV and XXXVI National Congress of Math-

ematicians (Ogólnopolski Sejmik Matematyków) (Szczyrk, 6�9 June 2019 and 14�17
June 2018).

� I gave a talk entitled What is randomness and can it be ampli�ed? at the XII Pi

Day Celebration , an outreach event organized annually by the Faculty of Science and
Technology of the University of Silesia in Katowice (Katowice, 14 March 2018).

� I conducted workshops for high school and junior high school students as part of the
program Talented from Pomerania, Academic Meetings organized by the Foun-
dation for the Development of the University of Gda«sk and the University of Gda«sk
in the years 2012 and 2013.

� I won the 1st prize in theMathematical Tale Competition , organized by the Insti-
tute of Mathematics of the University of Gda«sk and the Gda«sk Community Foundation
in 2011, for a fairy tale entitled Friends from Gda«sk.

� I hosted the festival eventWhat mathematics has to do with love? during the 8th Baltic
Science Festival (Gda«sk�Sopot, 27 May 2010).
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8 Other information regarding professional career

Selected scholarships and awards

2018

Individual Award of the 3rd degree for Research Activities, conferred by
the Rector of the University of Silesia in Katowice.

2017

START Stipend awarded by the Foundation for Polish Science for outstanding
young researchers under the age of thirty, representing all �elds of science.

The special Prof. Barbara Skarga Stipend awarded by the Foundation for
Polish Science to the winner of the START programme whose research (quoting
from the o�cial website of the FNP) proves boldest in breaking down barriers
between academic disciplines, opening new research perspectives, and creating new
values in the �eld of science.

START Outgoing Scholarship awarded by the Foundation for Polish Science to
selected winners of the START program, enabling a four-week scienti�c internship
at a research center of their choice (in my case, the Mathematical Institute at the
Leiden University in the Netherlands).

Foreign scholarship from the Henri Poincaré Institute in Paris, enabling
participation in the program T3-2017 Analysis in Quantum Information Theory
(IHP Trimester).

Management of research projects

2018�2019

Mathematical modeling with measures
(MINIATURA grant from the National Science Center Poland under the project
number 2018/02/X/ST1/01518).

Properties and applications of certain random Markov dynamical systems
(SMALL GRANT, funded by the Rector of the University of Silesia in Katowice,
as part of a program supporting grant initiatives and enhancing opportunities for
employees of the University of Silesia in Katowice to acquire projects in external
competitions).
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