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3.2. Description of results
3.2.1. Introduction

My scientific activity is connected with three fields of mathematics: dif-
ferential equations, probability theory and biomathematics. I have studied
problems concerning the asymptotic properties of the solutions of generalized
Fokker-Planck equations and transport equations. These equations generate
continuous stochastic (Markov) semigroups on L!(X), it means that the prob-
lem of asymptotic stability of the solutions of partial differential equations is
equivalent to analogous properties of the stochastic semigroups generated by
these equations. I have elaborated new and effective criteria of asymptotic
stability of stochastic and substochastic semigroups. These semigroups play
an important role in such diverse areas as astrophysics — fluctuations in the
brightness of the Milky-Way [7], in the theory of stochastic processes (diffusion
processes [26] and jump processes [33, 36]), in the theory of dynamical systems
and in population dynamics [9, 27]. In particular, they are applied in the de-
scription of structured populations models and fragmentation processes and
are used in investigations of distributions of genes in the genome [35], birth
and death processes and branching processes [1]. My habilitation thesis con-

cerns applications of stochastic semigroups mainly to structured population
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models, but some theoretical results are also illustrated by examples of diffu-

sion processes, plecewise deterministic processes and birth-death processes.
3.2.2. Inspiration to my studies

Theory of stochastic operators and semigroups, called also Markov operators
and semigroups appeared in different fields of mathematics: Markov chains,
ergodic theory, theory of diffusion and transport equations. Results concerning
this subject matter which had been obtained until the middle of the Eighties
of the last century were basically collected in books of S.R. Foguel [11], E.
Nummnielin [31] and A. Lasota, M.C. Mackey [23]. The first two books con-
tains mainly results from the theory of Harris operators. The book of Lasota

“and Mackey [23] is an excellent survey of many results concerning their ap-
plications to dynamical systems and partial differential equations (often with
some integral perturbation). Inspiration to my studies were some results of A,
Lasota, in particular, theorems concerning locally expending maps, the lower
function method and asymptotic periodicity. However, they were by no means
exhaustive, and in the Nineties it turned out that using techniques of Harris
operators led to new results concerning long-time asymptotics, in particular to
so called "Foguel alternative”. Since these results are essential to understand

my thesis, I will present them with necessary definitions in the next section.
3.2.3. Asymptotic properties of stochastic semigroups

In this Section we study asymptotic properties of stochastic semigroups:
asymptotic stability, sweeping and the Foguel alternative.

Asymptotic stability

Let the triple (X, £, m) be a o-finite measure space. Denote by D the subset

of the space L' = L1(X,Z, m) which contains all densities

D={felL': f>0, |fl=1}

A continuous semigroup {P(t)}+>0 of linear operators on L! is said to be a
stochastic or Markov semigroup if P({)(D) C D. If P is an operator, then a
semigroup {P" }pew, N = {0,1,2,... }, is said to be a discrete time semigroup.
A density f, is called invariant if P(t)f, = f, for each £ > 0. The stochastic
semigroup {P(t)}i>o is called asymptotically stable if there is an invariant

density f. such that

tli}I& |P)f—fl=0 for feD.
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A stochastic semigroup {P(t)}:i»0 is called partially integral if there exist

fo > 0 and a measurable non-negative function g(z, y) such that

1) /. | atepym(ds)miag) > 0

) P(to)f(z) > /X 4z, 9)f (y) m(dy) for every f € D.

If in formula (2) we have equals sign, then the semigroup is called integral

semigroup. We have the following

Theorem 1 ([32]). Let {P(t)}+>0 be a partially integral stochastic semigroup.
Assume that the semigroup {P(t)}iz0 has an invariant density f. and has no
other periodic poinis in the set of densities. If f, > 0 a.e. then the semigroup

{P(t) }1»0 is asymptotically stable.

Now we formulate corollaries which are useful in applications. We say that
a stochastic semigroup {P(t)}i>0 spreads supports if for every set A € ¥ and
for every f € D we have

flim m(supp P(t)f NA) = m(A)
and overlaps supports if for every f,¢g € D there exists { > 0 such that
m.(supp P(t)/ Nsupp P(t)g) > 0.

Corollary 1 ([32]). A partially integral stochastic semigroup which spreads

supports and has an invariant density is asymptotically stable.

Corollary 2 ([32]). A partially integral stochastic semigroup which overlaps

supports and has an invariant density [, > 0 a.e. is asymptotically stable.

These corollaries generalize some earlier results [4, 28, 33, 34] for integral
stochastic semigroups. Another proof of Corollary 2 is given in [5].

Sweeping

A stochastic semigroup {P(t)}:>0 is called sweeping with respect to a set
A e X if for every f € D
(3) lim [ P(t)f(z)m(dz)=0.

t—0o0 A
The notion of sweeping was introduced by Komorowski and Tyrcha [22].
Now we formulate the following condition.

(KT): There exists a measurable function f, such that: P(¢)f, < f, for
t>0, fi ¢ L', 0< f, <ocae and [, fidm < oo
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Theorem 2 ([22]). Let {P(t)}+0 be an integral stochastic semigroup which has
no invariant density. Assume that the semigroup {P(#)}s>0 and o set A € 5
satisfy condition (K'T). Then the semigroup {P(t)}:>0 s sweeping with respect
to A.

In paper [32] it was shown that Theorem 2 holds for a wider class of operators

than integral ones.

Theorem 3 ([32]). Let {P(t)}>0 be a stochastic semigroup which overlaps
supports. Assume that the semigroup {P(t)}i>0 and a set A € T satisfy con-
dition (K'T). Then the semigroup {P(t)}1»0 is sweeping with respect to A.

The main difficulty in applying Theorems 2 and 3 is to prove that a stochastic
semigroup satisfies condition (K7T'), in particular that it has a subinvariant
function f,. Now we formulate a criterion for sweeping which will be useful in

applications.

Theorem 4 ([32]). Let X be a metric space and % be the o—algebra of Borel
sets. We assume that a stochastic semigroup {P(t)}s>0 has the following prop-
erties:
(a) for every f € D we have [° P(t)fdt > 0 ae. or S o0 P*f > 0 ae. if
{P(t)}t>0 is a discrete time semigroup,
(b) for every yo € X there exist ¢ > 0 and a measurable function n > 0 such
that [ndm > 0 and
q9(z,y) = n(2) 1By (Y),
where q 1s a function satisfying (1) and (2). If the semigroup {P(t)}:i>0 has

no invariant density then it is sweeping with respect to compact sets.

Foguel alternative

We say that a stochastic semigroup {P(f)};>0 satisfies the Foguel alternative
il it is asymptotically stable or sweeping from a sufficiently large family of sets.
For example this family can be all compact sets.

From Corollary 1 and Theorem 4 it follows

Theorem 5. Let X be a metric space and ¥ be the o-algebra of Borel sets.
Let {P(t)}i>0 be a stochastic semigroup. We assume that there existt > 0 and
a continuous function g : X x X — (0, 00) such that

(@ PUI@) > [ a@n))mid) for feD.

Then this semigroup is asymptotically stable or is sweeping with respect to

compact sets.



6

Using Theorem 5 one can check that the Foguel alternative holds for multi-
state diffusion processes [26, 32], [KP7] diffusion with jumps [KP8] and trans-
port equations [KP9].

3.2.2. Results concerning asymptotic properties

In this Section we investigate continuous stochastic semigroups.
In [KP1] we strengthen Theorem 1 in the case of continuous time stochas-
tic semigroups. We give new sufficient conditions for asymptotic stability of

partially integral continuous stochastic semigroups.

Theorem 6 (KP1 Theorem 2). Let (X, %, 1) be a o-finite measure space and
let {P(t)}i>0 be a partially integral stochastic semigroup. Assume that the
semigroup {P(t)}1>0 has the only one invariant density f.. If f. > 0 a.e. then
the semigroup {P(t)}i>0 is asymptotically stable.

The assumption that the semigroup {P(t) }+>0 is continuous in the statement
of Theorem 6 is essential. The proof of Theorem 6 is based on the theory of

Harris operators given in [11, 18].

Remark 1. In applications we often replace the assumption that the invariant
density 1s unique by the following one. We assume that there does not exist
a set B € % such that m(E) > 0, m(X \ E) > 0 and P({)E = E for all
t > 0. Here P(t) is the operator acting on the o-algebra X given by: iof [ > 0,
supp f = A and supp Pf = B a.e., then PA=15 .

If X is a compact space then from Theorem 4 and Theorem 6 it follows

Corollary 3 (KP12 Corollary 1). Let X be a compact metric space and X
be the o—algebra of Borel sets. Let {P(f)}i»0 be a stochastic semigroup which
satisfies conditions:

(a) for every f € D we have [;° P(t)fdt >0 a.e.,

(b) for every yo € X there exist £ > 0, t > 0, and a measurable functionn = 0
such that [ndm >0 and

PO 20 [ I)md)
B(yo.2)
for z € X, where B(yg, ) is the open ball with center vy and radius &,

Then the semigroup {P(t)}i>0 is asymptotically stable.

From Theorems 4 and 6 it also follows the Foguel alternative:
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Corollary 4. Let X be a metric space and ¥ be the o —algebra of Borel sets. Lel
{P(t)}t=0 be an integral stochastic semigroup with a continuous and positive
kernel k(t,z,y) fort > 0. If the semigroup { P(t)}y>0 has an invariant density,
then it s asymptotically stable, and if { P(£)}>0 has no invariant densily, then

it 15 sweeping with respect lo compact sets.

We now give an application of Theorem 6 to jump process. Let X = R
Y = B(X) be the o-algebra of Borel subsets of X and u be the Lebesgue

measure on X. Consider the following equation

(5) %:Au—xuﬂpu,

where

d
Au=— Z B "
i=1 !

A > 0 and P is a stochastic operator corresponding to the iterated function
system (Si(z),...,Sn(z),p1(2),...,pNn(x)). Assume that S; : X — X, for
t=1,..., N, is a sequence of continuously differentiable transformations, such
that det Sj(x) # 0 for almost every z and that p, : X — [0,1],i=1,..., N, is
a sequence of continuous functions such that Zfi pi(z) =1 for each r € X.
Equation (5) has the following interpretation. We consider particles which
move along the solutions of the equation z’ = b(z). At any time interval
[t, 1+ At] a particle with the probability p;(z)At +o(At) jumps from the point
x to Si(z). For each T € X denote by mZ the solution x(t) of the equation
z'(L) = b(x(t)) with the initial condition z(0) = Z. Assume that m(X) C X
for all ¢ > 0. Then equation (5) generates a stochastic semigroup {P(t)}>g
on the space L*(X, B(X),p). Note that P(t)E C E for all £ > 0 and some
measurable set E if and only if S;(F) C Eforalli =1,...,N and m(E) C E
for all £ > 0. We have the following

Theorem 7 (KP1 Proposition 1.). Assume that the semigroup {P(t)}io
has a non-zero invariant function and has no non-trivial invariant sets. Let
(i1, ... ,%4) be a given sequence of integers from the set {1,...,N}. Let zp € X
be a given point and let x; = S; (x;_1) for j=1,....d. Set

vj =8 (Ta-1). .. 5 (zj-1)b(z;1) — blza)
Jor 3 =1,...,d. Assume that p; (z;_1) > 0 for all j = 1,...,d and sup-

pose that the vectors vy, ..., vq are linearly independent. Then the semigroup

{P(t) }i>0 is asymptotically stable.
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If the stochastic semigroup {P(¢) }+»0 has a non-zero invariant function f €
L', then the function f, = f*/||f*]|, assuming that ||f*|| > 0, is an invariant
density for {P(t)}i>0. We prove that the semigroup {P(%)}:>0 is partially
integral. Then from Theorem 6 and Remark 1 the semigroup {P(t)}so is
asymptotically stable.

In [KP1] we consider also randomly controlled dynamical system (see [KP1,
Section 3.2] for detail). We have k dynamical systems 7} (z) corresponding to
the equations 2’ = b(x,7),7 = 1...., k and we exchange their randomly. Denote
by {P(t)}>0 the semigroup corresponding to this system. Let {iy,...,4441) be

a sequence of integers from the set I' = {1,...,k}. Forz € X and t > 0 we
define the function ¢, ; ontheset Ay ={r=(m,...,7¢) ' i > 0, +---+73 <
t} by

Goalrieo 1 7a) = T omi 0. o o mi (i)

We have the following Theorem concerning asymptotic stability of the semi-
group {P()}ezo-

Theorem 8 (KP1 Proposition 2). Assume that the semigroup {P(t)}i>0 has
a non-zero invariant function and has no non-trivial inveriant sets. Suppose

that for some zg € X, tg > 0 and 7° € A,, we have

det [dw-’to,to (TO)

dr

(6) ] £0

Then the semigroup {P(t)}i>0 is asymptotically stable.

Note that a measurable set E C X x I is invariant with respect to the
semigroup {P(t)}1»o if and only if E is of the form E = EyxI" and m}(Ey) = Ep
for t >0 and 2 =1,...,%k. The proof of Theorem 8 is similar to the proof of
Theorem 7.

In the paper [KP3| we investigate substochastic semigroups, i.e. semigroups
{P(t) }+»0 of linear and positive operators on L' satisfying | P(¢)|| < 1fort > 0.
We found new sufficient conditions for asymptotic stability and sweeping of
partially integral continuous substochastic semigroups. Our criteria generalize
results of [KP1] and [32]. In particular, earlier results concerning asymptotic
stability of integral stochastic semigroups which spreads or overlaps supports

given in [4, 5, 28] follow from our main theorem.

Theorem 9 (KP3, Main Theorem 3.1). Let X be a metric space and £ =
B(X). Let {P(t)}>q be a substochastic semigroup on L'(X) which has the
only one invariant density f, ond let S = supp fo. Assume that {P(L)}i>0 s



a partially integral semigroup with the kernel k(t,z.y) such that

/5 fgk(to‘ z,y) m(dz) m(dy) > 0

for some ty > 0. Moreover, we assume that for some t; > 0

(a) there does not exist a nonempty measurable set B C X \ S such that
P*(t1)1g > 1 and ,

(b) for every yo € X \ S there exist £ > 0 and a measurable function n > 0
such that | xygMdm >0 and

(7) k(ly,x,y) 2 n(z)

Jorz € X andy € B(yo, <), where B(yo,c) is the open ball with center yo and
radius €.

Then for every f € D there exists a constant c(f) such that
lim 15P()f = c(f)/s
and for every compact set F € ¥ and f € D we have

lim PlE) F(z)midz) =10
= Jprxs
The proof of this theorem is based on the results concerning properties of
Harris operators [11, 18]. Note that, if a substochastic semigroup {P(t)};»0 on
LY(X) has the only one invariant density f, and supp f. = X then {P(t) }zo0
is a stochastic semigroup [KP3 Lemmad4.2] and from Theorem 9 it follows that

lim P(t)f = [.

t—o0

for each density f.
We now give an application of Theorem 9 to a birth-death process. A general
birth-death process on N = {0,1,...} is described by the following system of

equations
(8) J"L‘i(f) = —CL,‘It(t) = l‘)lgll',;wl(f.) -+ d,:_.}_l.frj_[_](t)

fori>0,where by =dy=0,6>0,d;,1 >0fori>0,a0="bp,a, =b;+d,
for i > 1. Let us assume that the system (8) generates a stochastic semigroup
{P(t) }s>0 and that d; > 0 for i > 0.

We now suppose that there exists n > 0 such that b, = 0, b; > 0 for i # n.

We claim that Theorem 9 applies. Thus, for each 7 € {! there exists a constant
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¢(Z) such that the solution of (8) with the initial condition x(0) = 7 satisfles

limg (8} = w(Z)a; fori S m,
t—oo

lim x;(t) =0 for i > n,
t—oco
where z* = () is an invariant density with suppz* = {0,1,...,n}.

3.2.5. Results concerning applications to structured population mod-

els.
Size structured model and age structured model

In the paper [KP2| we investigate a model of size-structured cell populations.
We assume that a cell is characterized by its size (maturity) x which ranges
from z = a to z = 1. The cell size grows according to equation z'(t) = g(xz(t)).
Cells can die or divide with rates p(x) and b(z). We assume that the cells
cannot divide before they have reached a minimal maturation ag € (a,1).
We denote by P(z, A) the probability for a daughter cell born from a mother
cell of size = to have a size in the set A. The function u(x, () describing the

distribution of the size satisfies the following equation

ou  O(gu) 5
(9) 5 = og Wbt 2P(bu),
where P : L'[a,1] — LYa,1] is a Markov operator such that P*lp(z) =

Pz, B).

A simple version of size-structured model was introduced for the first time
probably by Bell and Anderson [6] and was studied and generalized in many
papers (see e.g. [9, 12, 30, 38]). Our model includes models of a population of
organisms reproducing by binary fission with equal [9, 12, 14, 27] and unequal
division [2, 13, 16, 19] and both types of binary fission models [21].

We assume that a new born daughter cell has the size which is randomly
distributed in the interval (a.z — h], where h is a positive constant and = > ag

is the size of a mother cell, that is,
Plz,Ja,z—h])=1 forall z€[a,1]

Since the cells have to divide before they reach the maximal size z = 1, we

assume that
1
(10) / b{z) dx = 00.

We prove that equation (9) generates a continuous semigroup {7'(t)}o of

linear operators on L'[a,1] [KP2 Theoreml]. The main result of the paper
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is the theorem on asynchronous exponential growth of the population (AEG)
[KP2 Theorem 3]. In order to formulate the theorem on (AEG) we need aux-
iliary conditions. We additionally assume that P satisfies one of the following
conditions: (I): there exists a measurable function g : [a, 1] x [ag, 1] — [0, c0)
such that fal falo b(z)q(y,z)dzdy > 0and Pz, A) > [, qly,z)dy for z € [ay, 1]
and A € T, or (I'): there exist zy € (a,1), ¢ > 0 and function r: (zo — &, 2o +
g) — [a, 1], such that 7'(zo) # 0, b(zo) > 0, g(r(zq)) # r'(x0)g(ze) and

(x,{r(x)}) = e for z € (zg—&,30+¢).

Note that in the model with equal division we have P (z, {£}) = 1. In this
case r(r) = z/2. If we assume that there is z; € (a, 1) such that b(2x;) > 0,
2g(w1) # g{(2z1) then condition (/') holds. If we consider the model with
unequal division, i.e. P(z,A) = [, q(y,=)dy then condition (/) holds. The
process of reproduction can be neither equal nor unequal division [21]. In this
case condition (/) also holds.

"The proof of Theorem [KP2 Theorem 3] goes as follows. Equation (9) can
be written as an evolution equation u'(t) = Au. First we show that A is an
infinitesimal generator of a continuous semigroup {T(t)}4z0 of linear operators
on L'[a, 1]. Then we prove that there exist A € R and continuous and positive
functions v and w such that Av = Av and A*w = Aw. From this it follows
that the semigroup {P(t)};>0 given by P(t) = e~ MT(t) is a Markov semigroup
on the space L'(X, E,m), where m is a Borel measure on the interval [a, 1]
given by m(B) = [pw(z)dz [KP2 Theorem 2]. Moreover, for some ¢ > 0 the
function f, = cv is an invariant density with respect to {P({)}s>o. Finally,
from Theorem 1 we conclude that this semigroup is asymptotically stable.
Since the Lebesgue measure and the measure m are equivalent we obtain that
e Mu(-,t) converges to f,®(u) in L'(a, 1), where ®(1) : f Y (x

In [KP4] we consider a structured cell population model descnbed by a first
order partial differential equation perturbed by a general birth operator. We
investigate different processes usually treated separately. Our scheme describes
in a unifled way a wide class of structured population models and also includes
the classical age structured Sharpe-Lotka-McKendrick model [29, 37]. We start

with the Kolmogorov’s backward equation

g_j = g(x)% — p(zyu(t,z) + / v(t,y)P(z, dy),

where £1() is the rate of loss of individuals with parameter x by death or by
division and P(xz, A)At is the probability that an individual with the parameter
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z has a descendant in the set A. If u(t, z) is the distribution of z then u satisfies
the following Fokker-Planck equation
Ju  I(g(x)u)
11 -+ -
(1 o " ow

with the boundary condition

= —u(z)ult, =) + Pu(t, x),

-1

(12) g(a)u(t,a):/ b*(x)u(t, z) dz,

a

where 0%(m) describes the rate at which the individuals with the parameter m
produce individuals with the minimal parameter a, like in the age-structured
population model. We prove that the system (11) — (12) with the initial
condition u{0,z) = ug(x) generates a strongly continuous positive semigroup
{T(#)}t>0, on L'[a, 1] [KP4 Theorem 1]. In the proof of [KP4 Theorem 1] we
apply Desch’s theorem, see e.g. [8] or [3, Theorem 5.13|. Using the theory of
positive stochastic semigroups we establish new criteria for an asynchronous
exponential growth (AEG) of solution to the system (11) — (12) [KP4 Theo-
rem 2]. The proof of Theorem [KP4 Theorem 2] goes as follows. We replace
a continuous semigroup {7'(t)}+»o of linear operators with a stochastic semi-
group {P(t)}e>0 and using Theorem 6 we show that the semigroup {P(t)}¢>0
is asymptotically stable.

In the paper [KP5] we study a general maturity-structured population model
which is also described by the system (11) — (12). Note that models of cellular
replication studied in [KP2], [KKP4] are based on assumption that the death
or birth rate is unbounded at m = 1. In [KP5] we assume that g(1) = 0.
This condition guarantees that the maturity variable cannot exceed 1. An
advantage of our approach [KP5], is that both the birth and death rates can
be bounded. Using the Phillips perturbation theorem [10] we show that the
system generates a Co semigroups {7°(¢)}:>0. The main result of the paper
is the theorem on asynchronous exponential growth (AEG) of the population
[KP5 Theorem 1]. The idea of the proof is similar to that of [KP4 Theorem 2].
The most difficult part is to check that the eigenvector of the adjoint equation

is bounded and separated from zero.

4. Other results

In the paper [KP6] we consider a stochastically perturbed discrete time
dynamical system of the form z,;1 = S(x,)¢,. We found sufficient conditions
for the weak convergence of the distributions of x, to a stationary measure.
The proof is based on a theorem of A. Lasota and J.A. Yorke [24] concerning

Markov operators on measures.

W,
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In [KP7] we study semigroups generated by parabolic systems describing
the evolution of densities of two-state diffusion processes. In the paper we
formulate new sufficient conditions for asymptotic stability of abstract sto-
chastic semigroups [KP7 Theorem 2] and apply them to the system of partial
differential equations [KP7 Theorem 1]. The proofs are based on the Foguel
alternative. In order to exclude sweeping we introduce a notion called a Has-
minskil function. Consider a stochastic semigroup {P(#)};>0 and let A be the
infinitesimal generator of {P(t)};50. Let R = (I — A)~! be the resolvent oper-
ator at point 1. A measurable function V' : X — [0, 00) is called a Hasminskii
Junction for the stochastic semigroup {P(t)},50 and a set Z € T if there exist
M > 0 and £ > 0 such that

1) [ V@RI dnE) < [

x

(V(z) —2)f(z)dm(z) + /:? MRf(z)dm(x).

Theorem 10. Let {P(t)} be a stochastic semigroup generated by the equation

Assume that there exists a Hasminskil function for the semigroup {P(t)}i>0
and a set Z. Then the semigroup {P(t)} is not sweeping with respect to the
set 2.

In application we take V' such that the function A*V is “well defined” and
it satisfies the following condition A*V (z) < —c¢ < 0 for z ¢ Z. Then we
check that V satisfies inequality (13). The function V' was called a Hasminskii
function because he showed [15] that the semigroup generated by the Fokker-
Planck equation has an invariant density if there exists a positive function V
such that A*V(z) < —¢c < 0 if |z|| > . We apply the method of Hasminskii
function to semigroups generated by two-state diffusion processes. This process

is described by the following system of equations

3,
e —puy + qug + Aqug
at

(14)
% — s + A Uu
a Pt — qua 2U32.

A semigroup generated by this system satisfies the Foguel alternative. In order
to prove asymptotic stability it is sufficient to construct a proper Hasminski
function. One can check that if there exist non-negative C?-functions V; and
V5 such that
—p(E)a(2) +plz)Va(e) + AV (2) < —,
g(z)Vi(z) — g(z)Va(z) + A3Va(z) < —¢
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for [|z]| > 7, then the corresponding Markov semigroup is asymptotically stable
[KP7 Theorem 1]. In this case inequality (13) was proved by using some

generalization of the maximum principle. The paper contains some interesting

. Ou
examples and remarks. One might expect that if both equations i Aiuand

ou . :
— = Asu are asymptotically stable then system (14) is also asymptotically

ot

stable. But it is not true ( see [KP7 Remark 2]). It is interesting that system
3, 0

(14) can be asymptotically stable when both equations a—? = Aju and d—q; =

Asu are not stable [KP7 Remark3).

In [KP8] we study diffusion with jumps. Consider the following equation

(15) % = Au — Au + APu,

where A > 0,

(16) Au= Zd: Plagy) _ zd; Bt
= 0, el Oz,

and P is a stochastic operator corresponding to the iterated function system

(S1(@)s. .., Swlz), pr(z), - .. P (@)

We assume that for each 7 we have

m_[|5;(z)|l =

EIIH oc
Assume that

”2 - HTHQ) = oy

lim 2(x, b(x +,\ij

llz]—o0

where (-, ) is the scalar product in R%. Then a stochastic semigroup {P(t) }>0
generated by equation (15) is asymptotically stable [KP8 Theorem 3]. Our
criterion generalizes the results of [17] and [33]. The proof is based on the
method of Hasminskii function. Inequality (13) was proved by using some
generalization of the maximum principle.

In [KP9] we investigate a semigroup generated by transport equation. Con-
sider a partial differential equation with an integral perturbation
(??-i-}\u: 2. ('3;17, —1—)\] (z,y)uly,t)dy.

(17)
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If k(x,y) is a continuous and strictly positive function and there exists a (-
function V' : X — [0, co) such that

d

v
E big—TAV(I)-I-)\ Ely,z)V(y)dy < —c< 0
— i

for [lz]| = 7, r > 0, then a stochastic semigroup {P(t)};50 generated by equa-
tion (17) is asymptotically stable [KP9 Theorem 1]. Equation (17) can be
written as an evolution equation % = Au. The proof of inequality (13) is
different and based on an approximation of V by a sequence of elements from
the domain of the operator A*.

In the paper [KP10] we present results in the theory of stochastic opera-
tors and semigroups The main subject of the paper are stochastic semigroups
generated by partial differential equations (transport equations). Equations
of this type appear in the theory of stochastic processes (diffusion processes
and jump processes), in the theory of dynamical systems and in population
dynamics.

In [KP11] we consider a system of stochastic equations which models the
population dynamics of a prey-predator type. We analyse long-time behaviour
of densities of the distributions of the solutions. We prove that the densities
can coverge in L' to an invariant density or can converge weakly to a singular
measure.

The paper [KP12] is devoted to a stochastic process used in modelling gene
expression in eucaryotes [25]. Similar model was also investigated in [20]. We
show that its distributions satisfy a Folkker-Planck-type system of partial dif-
ferential equations. Then, we construct a stochastic semigroup corresponding
to this system. The main result of the paper is asymptotic stability of the
involved semigroup in the set of densities [KP12 Theorem3]. The strategy of
the proof is as follows. First, it is shown that the transition function of the
related stochastic process has a kernel (integral) part. Then we find a set F on
which the density of the kernel part of the transition function is positive. Next
we show that the set £ is an “attractor”. Since the attractor F is a compact
set, from Corollary 5 it follows that the semigroup is asymptotically stable.

In [KP13] we present some recent results concerning the generation and
the long-time behaviour of stochastic semigroups and illustrate them by some
biological applications. The general results are applied to biological models
described by piecewise deterministic Markov processes: birth-death processes,
the evolution of the genome, genes expression and physiologically structured

models.

W/
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