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Introduction

Physical and biological processes evolving in time are modeled most often by the use
of ordinary and partial differential equations and systems. If the initial or initial boundary
value problem for a differential equation is globally well-posed, i.e., solutions exist, are
unique, can be extended for all times and depend continuously on the initial conditions,
then, in the case of autonomous equations, such a problem generates a dynamical system
or a semigroup {T (t) : t ­ 0} on a given metric space (V, d) called the phase space.

Among many questions concerning semigroups, one of the most important is the study
of behavior of trajectories t 7→ T (t)u0 in time, where we are not interested in transient
behavior, but in asymptotic one as t → ∞. Particularly interesting are physical systems
in which dissipation of energy takes place. They are described by dissipative semigroups
for which there exists a bounded set B0, which attracts each bounded subset B of the
phase space with respect to the Hausdorff semidistance

distV (T (t)B,B0) = sup
x∈B

inf
y∈B0

d(T (t)x, y)→ 0 as t→∞.

The study of the asymptotics of dissipative semigroups on subsets of infinite-dimen-
sional Banach spaces generated by autonomous partial differential equations can be re-
duced to the description of a global attractor A being a compact invariant set,

T (t)A = A, t ­ 0,

attracting all bounded subsets of the phase space. Indeed, each trajectory t → T (t)u0

possesses after a sufficiently long time its ”shadow” in the form of a trajectory in the
global attractor ([RO, Proposition 10.14]). Therefore the following topics are so important:
existence of the global attractor, its characterization, structure and geometry, dynamics
on the attractor or its structural stability under the influence of a perturbation of the
equation leading to it. These subjects have been investigated all over the world in the
span of many years and there exists an extensive literature devoted to them (among
others [HE1], [HA1], [LA], [B-V], [TE], [C-D], [RO], [S-Y]).

The global attractor for a semigroup is a uniquely determined object and frequently
has a finite (fractal) dimension, but its attraction can be arbitrarily slow or the object
itself may not be visible in numerical simulations (cf. [E-Y-Y]). The need to overcome
these drawbacks motivated the appearance of the notion of an exponential attractor. The
exponential attractor M for a semigroup is a compact, positively invariant set,

T (t)M⊂M, t ­ 0,
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with finite fractal dimension

dimV
f (M) = lim sup

ε→0
log 1

ε
NV
ε (M) <∞,

where NV
ε (M) denotes the smallest number of balls of radius ε in V necessary to cover

M, and exponentially attracting each bounded subset B of the phase space at uniform
rate ω > 0

lim
t→∞

eωt distV (T (t)B,M) = 0.

Although such an object is not uniquely determined, it still contains the global attractor
A. Moreover, its existence also implies the finite fractal dimension of the global attractor.
The first constructions of an exponential attractor come from the monograph [E-F-N-T]
and papers [D-N], [E-M-Z].

In recent years more and more attention has been devoted to more general, nonautono-
mous ordinary and partial differential equations and systems. In this case the counterpart
of a semigroup is an evolution process {U(t, s) : t ­ s} on a phase space V . However,
there is no unique counterpart of the global attractor. Different approaches usually lead
to different notions describing asymptotic behavior of evolution processes such as uniform
attractors, pullback global attractors, forward global attractors (cf. [CH], [C-V], [C-L-R],
[K-R]). According to the monograph [C-L-R], the most universal of them seems to be the
notion of a pullback global attractor, that is, a family of compact sets {A(t) : t ∈ R},
which is invariant under the process,

U(t, s)A(s) = A(t), t ­ s,

attracts in the pullback sense each bounded subset B of the phase space

distV (U(t, s)B,A(t))→ 0 as s→ −∞ for every t ∈ R,

and is minimal in the sense of inclusion among families of closed sets attracting in the
pullback sense all bounded subsets (see [C-L-R], [C-Ł-R], [C-C-L-R]).

Pullback exponential attractors for evolution processes

In 2009 there still did not exist general constructions of the counterpart of an exponen-
tial attractor for evolution processes, except for the discrete counterpart and a particular
case for reaction-diffusion equations from the paper [E-Z-M]. A construction of such an ob-
ject is contained in my paper [1], written jointly with Messoud Efendiev, which is a part of
my scientific achievement. The article [1] was one of the first three papers, independently
of [L-M-R] and [E-Y-Y], devoted to general conditions for the existence of a family of
compact sets {M(t) : t ∈ R} in a Banach space V , which is positively invariant under the
process {U(t, s) : t ­ s}, i.e.,

U(t, s)M(s) ⊂M(t), t ­ s,

has uniform bound with respect to t ∈ R in V of the fractal dimension and exponentially
attracts in the pullback sense all bounded subsets of the space V , i.e., there exists ω > 0
such that for every bounded set B ⊂ V we have

lim
s→∞

eωs distV (U(t, t− s)B,M(t)) = 0 for every t ∈ R. (1)
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The family {M(t) : t ∈ R} is called a pullback exponential attractor.
To present precisely the results of [1], consider an evolution process {U(t, s) : t ­ s}

on a Banach space V with the norm ‖·‖V . Thus, we have

U(t, s)U(s, r) = U(t, r), t ­ s ­ r, U(t, t) = Id, t ∈ R.

Because we are interested in the past, we distinguish t0 ¬ ∞ and the set T = {t ∈
R : t ¬ t0}. Our result from 2011 deals with processes for which there exists a bounded
set B0 ⊂ V absorbing all bounded sets B ⊂ V in the pullback sense uniformly w.r.t.
t ∈ T , i.e.,

∃TB>0∀s­TB
⋃
t∈T

U(t, t− s)B ⊂ B0. (2)

The next assumption, central for the proof, is the so called smoothing property, already
used earlier e.g. in [M-P] to show the finiteness of the fractal dimension of a set. Namely,
we assume that the space V is compactly embedded into some auxiliary normed space
W with norm ‖·‖W and the process on B0 satisfies, uniformly w.r.t. t ∈ T , the following
condition with κ > 0

sup
t∈T
‖U(t, t− TB0)u1 − U(t, t− TB0)u2‖V ¬ κ ‖u1 − u2‖W , u1, u2 ∈ B0, (3)

where TB0 > 0 is the time of absorption of B0 from (2). Furthermore, we also assume that
the process is Hölder continuous w.r.t. the initial time for times from [TB0 , 2TB0 ] and is
Hölder continuous also w.r.t. the time shift, i.e., there exist 0 < ξ1, ξ2 ¬ 1 and constants
c1, c2 > 0 such that

sup
t∈T
‖U(t, t− t1)u− U(t, t− t2)u‖W ¬ c1 |t1 − t2|ξ1 , t1, t2 ∈ [TB0 , 2TB0 ], u ∈ B0, (4)

sup
t∈T
‖U(t, t− TB0)u− U(t− t1, t− t1 − TB0)u‖W ¬ c2t

ξ2
1 , t1 ∈ [0, TB0 ], u ∈ B0. (5)

Of course, for autonomous evolution processes, coming from a semigroup, the above con-
dition (5) is satisfied trivially. In [1, Theorem 2.1] we show that then there exists a family
{M(t) : t ∈ T } of nonempty subsets of B0, which are precompact (i.e., their closure is
compact) in V , which is positively invariant under the process, i.e.,

U(t, s)M(s) ⊂M(t), t ­ s, t ∈ T .

The mentioned family has a uniform bound w.r.t. t ∈ T of the fractal dimension in V
expressed by the constants appearing in the assumptions stated above and a parameter
ν ∈ (0, 1

2), i.e.,

sup
t∈T

dimV
f (M(t)) ¬ max{ξ−1

1 , ξ−1
2 }(1 + log 1

2ν
(1 + µκ)) + log 1

2ν
NW

ν
κ

(BV (0, 1)),

where µ > 0 is a constant from the embedding of V into W

‖u‖W ¬ µ ‖u‖V , u ∈ V,

whereas NW
ν
κ

(BV (0, 1)) denotes the smallest number of balls in W with radius ν
κ

necessary
to cover a unit ball in V . Moreover, this family exponentially attracts in the pullback sense
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all bounded subsets of V . More precisely, there exists χ > 0 such that for each bounded
B ⊂ V there is cB > 0 such that

sup
t∈T

distV (U(t, t− s)B,M(t)) ¬ cBe
−χs, s ­ TB + 2.

If we require additionally that the mapping

clV B0 3 u 7→ U(t, s)u ∈ V (6)

is continuous for t ­ s, t ∈ T , then, taking closures in V of the above sets M(t), we
can consider that the sets forming the family are compact and contained in clV B0. Let
us point out that the family from the construction in [1, Theorem 2.1] is not uniquely
determined, because of its dependence on the parameter ν, for example.

According to [1, Proposition 2.3], under the assumptions (2)-(6), there also exists
a family {A(t) : t ∈ T } of compact subsets of V , positively invariant under the process,

U(t, s)A(s) = A(t), t ­ s, t ∈ T ,

which attracts in the pullback sense all bounded sets B ⊂ V for every t ∈ T

lim
s→∞

distV (U(t, t− s)B,A(t)) = 0

and if {Ã(t) : t ∈ T } is a family of closed sets in V attracting in the pullback sense all
bounded sets in V for every t ∈ T , then A(t) ⊂ Ã(t), t ∈ T . The family is given by the
formula

A(t) = clV
⋃

B⊂V, bounded

ω(B, t), t ∈ T ,

where ω(B, t) is the pullback ω−limit set of a subset B at time t

ω(B, t) =
⋂
τ­0

clV
⋃
s­τ

U(t, t− s)B.

In particular, if t0 = ∞ we obtain the existence of the pullback global attractor with
uniformly bounded fractal dimension, contained in a pullback exponential attractor, which
is a subset of clV B0. Moreover, the attraction of bounded sets by the family {M(t) : t ∈ R}
is uniform, i.e., there exists ω > 0 such that for every bounded set B ⊂ V

lim
s→∞

eωs sup
t∈R

distV (U(t, t− s)B,M(t)) = 0

holds, which in turn is equivalent to the forward exponential uniform attraction, i.e.,

lim
s→∞

eωs sup
t∈R

distV (U(t+ s, t)B,M(t+ s)) = 0.

In [1, Corollary 2.4] we observe that to obtain the existence of a pullback exponential
attractor we do not need to assume that t0 = ∞. In the case of t0 < ∞ it is enough to
assume the Lipschitz continuity of the process

∀t>0∃k(t)>0∀u1,u2∈B0 ‖U(t+ t0, t0)u1 − U(t+ t0, t0)u2‖V ¬ k(t) ‖u1 − u2‖V (7)
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and define the missing sets of the family by M(t) = U(t, t0)M(t0), t ­ t0. Although
we then lose the uniform character of the exponential attraction, we still know that (1)
holds. Of course, the existence of the pullback global attractor contained in the pullback
exponential attractor is also guaranteed in this case (see [1, Proposition 2.5]).

In the paper [1] we formulated conditions for nonautonomous semilinear parabolic
equations to generate an evolution process satisfying assumptions (2)–(7). Consider the
following abstract Cauchy problemut + Au = F (t, u), t > s,

u(s) = u0,
(8)

where A is a positive sectorial operator (cf. [HE1], [C-D], [6]) in a Banach space X with
a compact resolvent. By Xγ = D(Aγ) we denote the fractional power spaces corresponding
to the operator A. We fix α ∈ [0, 1) and assume that the nonlinearity F : R×Xα → X is
Hölder continuous with respect to time and Lipschitz continuous on bounded subsets of
Xα. More precisely, for every bounded set B ⊂ Xα there exists 0 < θ = θ(B) < 1 such
that for any T1, T2 ∈ R, T1 < T2 there is a Lipschitz constant L = L(T2 − T1, B) > 0 such
that

‖F (t1, u1)− F (t2, u2)‖X ¬ L(|t1 − t2|θ + ‖u1 − u2‖Xα), t1, t2 ∈ [T1, T2], u1, u2 ∈ B. (9)

Under the assumption (9) for any initial time s ∈ R and any initial condition u0 ∈ Xα

there exists a unique Xα solution of the problem (8), i.e.,

u ∈ C([s, tmax), Xα) ∩ C((s, tmax), X1) ∩ C1((s, tmax), X)

satisfying the differential equation from (8) in X and defined on the maximal interval of
existence [s, tmax) (cf. [HE1], [C-D]).

We distinguish the set T = {t ∈ R : t ¬ t0} for some t0 ¬ ∞ and assume that for
some M > 0

sup
t∈T
‖F (t, 0)‖X ¬M. (10)

To prove that local solutions can be extended to the whole half-line and obtain the
existence of a bounded absorbing set in Xα, we check in applications an appropriate
a priori estimate. In consequence, we assume that

every local solution can be extended to the global one, i.e., tmax =∞, (11)

there exists a constant a > 0 and a nondecreasing function Q : [0,∞) → [0,∞) (both
independent of s) such that

‖u(t)‖Xα ¬ Q(‖u0‖Xα)e−a(t−s) +R0, s ¬ t, t ∈ T , (12)

holds with a constant R0 = R0(t0) > 0 independent of s, t and u0 and (in the case of
t0 <∞) for every T > 0 there exist RT,s > 0 and a nondecreasing function Q̃T,s : [0,∞)→
[0,∞) such that

‖u(t)‖Xα ¬ Q̃T,s(‖u0‖Xα) +RT,s, t ∈ [s, s+ T ]. (13)

The assumptions (11)–(13) can be simplified by replacing them with a stronger a priori
condition, which guarantees dissipativity in Xα. Namely, let

‖u(t)‖Xα ¬ Q(‖u0‖Xα)e−a(t−s) +R(t), t ∈ [s, tmax), (14)
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where a > 0, Q : [0,∞) → [0,∞) is a nondecreasing function and R : R → [0,∞) is
a continuous function bounded on T .

Under the assumptions (9)–(13) the Xα solutions of the problem (8) exist globally
in time and generate an evolution process {U(t, s) : t ­ s} on Xα, which satisfies the
assumptions (2)–(7) with V = Xβ and W = Xα for β ∈ (α, 1).

Theorem 1 ([1, Theorem 3.6]). Under the above assumptions for β ∈ (α, 1) there exists
a family {M(t) : t ∈ R} of nonempty compact subsets of Xβ, positively invariant un-
der the process {U(t, s) : t ­ s}, which has a uniform bound w.r.t. t ∈ R of the fractal
dimension in Xβ and exponentially attracts in the pullback sense all bounded subsets of
Xβ. Additionally, if t0 = ∞, then the exponential attraction is uniform w.r.t. t ∈ R.
Moreover, the pullback exponential attractor {M(t) : t ∈ R} contains the pullback global
attractor {A(t) : t ∈ R} in the space Xβ.

The paper [2], which makes part of the scientific achievement, is a natural illustra-
tion of the topics discussed in [1] and contains applications of the abstract theory to
nonautonomous reaction-diffusion equations and systems.

In the main part of the paper [2] we consider, following [E-Z], the nonautonomous
reaction-diffusion system of equationsut + Au = f(u) + g(t), t > s, x ∈ Ω,

u(s, x) = u0(x), x ∈ Ω, u(t, x) = 0, t ­ s, x ∈ ∂Ω,
(15)

where Ω ⊂ R3 is a bounded domain with the boundary ∂Ω of class C2+η. Here u(t, x) =
(u1(t, x), . . . , uk(t, x)) is an unknown function, whereas f(u) = (f1(u), . . . , fk(u)) and
g(t, x) = (g1(t, x), . . . , gk(t, x)) are given functions. We assume thatAu = (A1u1, . . . , Akuk)
is a second order elliptic differential operator, where

Alul(x) =
3∑

i,j=1

∂xi(a
l
ij(x)∂xjul(x)), x ∈ Ω, l = 1, . . . , k,

with coefficients alij = alji of class C1+η(Ω) and satisfying the uniform strong ellipticity
condition

∃ν>0∀l=1,...,k∀x∈Ω∀ξ=(ξ1,ξ2,ξ3)∈R3 −
3∑

i,j=1

alij(x)ξiξj ­ ν |ξ|2 .

Furthermore, we assume that for the nonlinearity f ∈ C(Rk,Rk) there exist constants
p1, . . . , pk ­ 0 and q1, . . . , qk ­ 0 such that f satisfies the growth condition

∃c>0∀u=(u1,...,uk),v=(v1,...,vk)∈Rk |f(u)− f(v)|2 ¬ c
k∑
l=1

|ul − vl|2 (1 + |ul|pl + |vl|pl) (16)

and the anisotropic dissipativity condition

∃C>0∀u=(u1,...,uk)∈Rk
k∑
l=1

fl(u)ul |ul|ql ¬ C. (17)

As refers to the time-dependent perturbation, we suppose that

g : R→ [L2(Ω)]k is globally Hölder continuous with exponent θ ∈ (0, 1] (18)
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and there exists t0 ¬ ∞ such that

sup
t∈T
‖g(t)‖[L2(Ω)]k <∞, (19)

where we denoted T = {t ∈ R : t ¬ t0} as above.
In particular, if k = 2 and for α, β, γ, δ ∈ R and ε > 0 we have

f1(u1, u2) = αu1 + βu2
1 − u3

1 − γu2, f2(u1, u2) = δu1 − εu2, (20)

then the system (15) is a nonautonomous perturbation of the FitzHugh-Nagumo system
modeling transmission of nerve impulses in axons. In this case, both assumptions (16)
and (17) are satisfied with p1 = 4, p2 = 0 and q1 = q2 = q, where q ­ 0 is arbitrary.

Another particular case of the system (15) is the model of a chemical reaction with
the nonlinearity

f1(u1, u2) = u2 − u3
1, f2(u1, u2) = u3

1 − u2. (21)

Then the assumptions (16) and (17) are satisfied with p1 = 4, p2 = 0 and q1 = 4,
q2 = 2

3 , whereas the common dissipativity condition (q1 = q2 = 0) does not hold, since
the expression

(u2 − u3
1)u1 + (u3

1 − u2)u2 = (u2 − u1)(u3
1 − u2)

attains values arbitrarily large.
We consider (15) as the abstract Cauchy problem (8) in the space X = [L2(Ω)]k with

F (t, u) = f(u) + g(t), where A is a sectorial operator in X with the domain D(A) =
[H2(Ω) ∩H1

0 (Ω)]k and has a compact resolvent.
First we check in [2, Proposition 3.2] that F : R × X 1

2 → X, where X
1
2 = [H1

0 (Ω)]k

is the fractional power space, is well-defined and satisfies the condition (9) provided that
0 ¬ pl ¬ 4, l = 1, . . . , k. The assumption (10) can be easily verified, since it follows from
(19) that

sup
t∈T
‖F (t, 0)‖[L2(Ω)]k ¬ ‖f(0)‖[L2(Ω)]k + sup

t∈T
‖g(t)‖[L2(Ω)]k <∞.

The most difficult stage of the study of the system (15) was to prove that under certain
conditions on pl and ql the assumptions (11)–(13) are satisfied. In succession we showed
the a priori estimates of

k∑
l=1

‖ul(t)‖2+ql
L2+ql (Ω) and

∫ t

t−h

k∑
l=1

∥∥∥∥∣∣∣∣∇(|ul(τ)|
ql+2
2 )

∣∣∣∣∥∥∥∥2

L2(Ω)
dτ

in [2, Proposition 3.5], the a priori estimates of

‖u(t)‖2
[L2(Ω)]k and

∫ t

t−h

k∑
l=1

‖|∇ul(τ)|‖2
L2(Ω) dτ

in [2, Proposition 3.7] and finally the a priori estimate of

k∑
l=1

‖|∇ul(t)|‖2
L2(Ω)

in [2, Proposition 3.8]. They lead to the following result in which we verify the assumptions
(11)–(13).
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Theorem 2 ([2, Corollary 3.9]). If pl ¬ ql ¬ 4, l = 1, . . . , k and u = (u1, . . . , uk) is
an X

1
2 solution of (15) on [s, tmax), then tmax =∞ and for t ­ s, t ∈ T we have

‖u(t)‖[H10 (Ω)]k ¬ Q1

(
‖u(s)‖[H10 (Ω)]k

)
e−

λ1ν
8 (t−s) +Q2

(
sup

τ∈(−∞,t0+2)
‖g(τ)‖[L2(Ω)]k

)
,

where Q1, Q2 are positive nondecreasing functions, and for any T > 0 there exist positive
nondecreasing functions Q̃1 = Q̃1(T ), Q̃2 = Q̃2(T ) such that for s ¬ t ¬ s+ T

‖u(t)‖[H10 (Ω)]k ¬ Q̃1

(
‖u(s)‖[H10 (Ω)]k

)
e−

λ1ν
8 (t−s) + Q̃2

(
sup

τ∈[s,s+T ]
‖g(τ)‖[L2(Ω)]k

)
holds, where λ1 > 0 is the constant from the Poincaré inequality.

On account of that we can apply Theorem 1. Thus the main result of the paper [2]
is the theorem [2, Theorem 3.10] on the existence of a pullback exponential attractor
and the pullback global attractor with uniformly bounded fractal dimension in the space
[H2β

0 (Ω)]k with β ∈ (1
2 , 1) for the problem (15) if the conditions (16) and (17) hold with

0 ¬ pl ¬ ql ¬ 4, l = 1, . . . , k, and the nonautonomous perturbation satisfies (18) and (19).
In particular, this applies to the perturbation of the FitzHugh-Nagumo system (20) and
the nonlinearity (21).

Another application of the theory introduced in [1] is the initial boundary value pro-
blem of Dirichlet type for the nonautonomous Chafee-Infante equation of the formut = 4Du+ λu− b(t)u3, t > s, x ∈ Ω,

u(s, x) = u0(x), x ∈ Ω, u(t, x) = 0, t ­ s, x ∈ ∂Ω,
(22)

in a bounded domain Ω ⊂ RN , N ¬ 3, with sufficiently smooth boundary ∂Ω, which was
studied earlier among others in the paper [L-S]. In our case we assume that λ ∈ R and
the function b is Hölder continuous on R with exponent θ ∈ (0, 1] and satisfies

0 < b(t) ¬M, t ∈ R,

with some constant M > 0. Moreover, we assume that there exist t0 ¬ ∞ and m > 0
such that

m ¬ b(t), t ∈ T = {t ∈ R : t ¬ t0}.
We observe that the problem (22) can be considered as the abstract Cauchy pro-

blem (8) with A = −4D in X = L2(Ω) with the domain D(A) = H2(Ω) ∩ H1
0 (Ω) and

F : R×X 1
2 → X given by F (t, u) = λu− b(t)u3, where X

1
2 = H1

0 (Ω), which satisfies the
assumptions (9) and (10). To verify the condition (14), we show the a priori estimate in
the space H1

0 (Ω). Specifically, we get

‖u(t)‖H10 (Ω) ¬
√

1 + 2 |λ|+ λ1 ‖u(s)‖H10 (Ω) e
−λ12 (t−s) +R(t),

where

R(t) = R0

(
λ1m

∫ t

−∞

e−λ1(t−τ)

b(τ)
dτ

) 1
2

, t ∈ R,

and

R0 =

√
(1 + 2 |λ|+ λ1)λ2 |Ω|

2λ1m
,
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with λ1 > 0 being the first eigenvalue of the Laplace operator considered here.
Therefore, we can apply Theorem 1 and obtain for (22) the existence of a pullback

exponential attractor and the pullback global attractor with uniformly bounded fractal
dimension in the space H2β

0 (Ω) for β ∈ (1
2 , 1), which is stated in [2, Corollary 2.1].

I presented the results of the previously described paper [1], for example, during the
ICMC Summer Meeting on Differential Equations Chapter 2011 in São Carlos in Brazil
in 2011. It was there that our construction aroused interest of Alexandre Nolasco de
Carvalho and Stefanie Sonner, who simplified and generalized it in 2013 in the paper
[C-S1]. First, they let the process {U(t, s) : t ­ s} on V be asymptotically compact as the
sum U = S +C, where the family of operators S has smoothing property with respect to
the space V and an auxiliary space W with V compactly embedded into W , whereas C
is a family of contractions in the space V . The other important aspect was to allow the
dependence of the absorbing set B0 on time admitting the unboundedness of the pullback
exponential attractor also in the past. However, the mentioned dependence on time of
the absorbing family {B(t) : t ∈ R} could not be exponential in the paper [C-S1], since
the sets B(t) could grow in the past only subexponentially. Removal of this assumption
constitutes the main result of my paper [3], which is a part of the scientific achievement.

In [3] I assume that

(A1) there exists a family of nonempty closed and bounded subsets B(t), t ∈ R, of a Ba-
nach space V , which is positively invariant under the evolution process {U(t, s) : t ­
s} on V , i.e., U(t, s)B(s) ⊂ B(t), t ­ s,

(A2) there exist t0 ∈ R, γ0 ­ 0 and M > 0 such that

diamV (B(t)) < Me−γ0t, t ¬ t0,

(A3) in the past the family {B(t) : t ∈ R} absorbs in the pullback sense all bounded
subsets of V , i.e., for every bounded set D in V and t ¬ t0 there exists TD,t ­ 0
such that

U(t, t− r)D ⊂ B(t), r ­ TD,t,

and, additionally, the function (−∞, t0] 3 t 7→ TD,t ∈ [0,∞) is nondecreasing for
each such D, so in fact we have for every bounded D in V and t ¬ t0

U(s, s− r)D ⊂ B(s), s ¬ t, r ­ TD,t.

Observe that (A2) implies that for every γ > γ0

diamV (B(t))eγt → 0 as t→ −∞,

which generalizes the assumption used in [C-S1, Definition 3.1]. In particular, the as-
sumptions stated above admit an exponential growth in the past of the sets forming the
pullback absorbing family.

Next, I assume that the family of operators {U(t, s) : t0 ­ t ­ s} can be decomposed
as a sum

U(t, s) = C(t, s) + S(t, s),

where {C(t, s) : t0 ­ t ­ s} and {S(t, s) : t0 ­ t ­ s} are families of operators satisfying
the following properties:
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(H1) there exists t̃ > 0 such that C(t, t− t̃) are contractions on the absorbing family with
contraction constant independent of time, i.e.,∥∥∥C(t, t− t̃)u− C(t, t− t̃)v

∥∥∥
V
¬ λ ‖u− v‖V , t ¬ t0, u, v ∈ B(t− t̃),

where 0 ¬ λ < 1
2e
−γ0 t̃ with γ0 ­ 0 taken from the assumption (A2),

(H2) there exists an auxiliary normed space (W, ‖·‖W ) such that V is compactly embedded
into W and µ > 0 satisfies

‖u‖W ¬ µ ‖u‖V , u ∈ V,

whereas the operators S(t, t − t̃) satisfy the smoothing property with a constant
κ > 0, that is∥∥∥S(t, t− t̃)u− S(t, t− t̃)v

∥∥∥
V
¬ κ ‖u− v‖W , t ¬ t0, u, v ∈ B(t− t̃).

Finally, I also assume that

(H3) the process is Lipschitz continuous on the absorbing family, i.e., for every t ∈ R and
s ∈ [t, t+ t̃] there exists a constant Lt,s > 0 such that

‖U(s, t)u− U(s, t)v‖V ¬ Lt,s ‖u− v‖V , u, v ∈ B(t).

The assumption (H3) in fact implies that for any s ­ t there is a constant Lt,s > 0 such
that

‖U(s, t)u− U(s, t)v‖V ¬ Lt,s ‖u− v‖V , u, v ∈ B(t).

Observe that the assumptions (A1) and (H3) hold for every t ∈ R, while the rest of the
assumptions is satisfied only in the past, i.e., for t ¬ t0.

The main result of the paper [3] is the theorem on the existence of a pullback exponen-
tial attractor under the above-mentioned assumptions, which admit in the past an expo-
nential growth of the pullback absorbing family.

Theorem 3 ([3, Theorem 2.2]). If the process {U(t, s) : t ­ s} on a Banach space V
satisfies (A1)-(A3) and (H1)-(H3), then for every ν ∈ (0, 1

2e
−γ0 t̃−λ) there exists a pullback

exponential attractor {M(t) =Mν(t) : t ∈ R} in V with the following properties:

(a) M(t) is a nonempty compact subset of B(t) for t ∈ R,

(b) U(t, s)M(s) ⊂M(t), t ­ s,

(c) the fractal dimension of the set M(t) is uniformly bounded w.r.t. t ∈ R, namely

sup
t∈R

dimV
f (M(t)) ¬

− lnNW
ν
κ

(BV
1 (0))

ln (2(ν + λ)) + γ0t̃
,

where NW
ν
κ

(BV
1 (0)) denotes the smallest number of balls in W with radius ν

κ
and

centers in BV
1 (0) necessary to cover the unit ball BV

1 (0) in V ,
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(d) for any t ∈ R there exists ct > 0 such that for any s ­ max{t− t0, 0}+ 2t̃

distV (U(t, t− s)B(t− s),M(t)) ¬ cte
−ω0s,

where ω0 = −1
t̃

(
ln (2(ν + λ)) + γ0t̃

)
> 0,

(e) for any 0 < ω < ω0 and any bounded set D ⊂ V we have

lim
s→∞

eωs distV (U(t, t− s)D,M(t)) = 0, t ∈ R.

In [3, Corollary 2.6] I formulated a more general condition, which can substitute the
smoothing property (H2) in Theorem 3. Namely,

(H2) there is N = Nν ∈ N such that for any t ¬ t0, any R > 0 and any u ∈ B(t− t̃) there
exist v1, . . . , vN ∈ V such that

S(t, t− t̃)(B(t− t̃) ∩BV
R (u)) ⊂

N⋃
i=1

BV
νR(vi).

Of course the existence of a pullback exponential attractor implies the existence of the
pullback global attractor with uniformly bounded fractal dimension. More precisely, on
account of [3, Corollary 2.8] we have

sup
t∈R

dimV
f (A(t)) ¬ sup

t∈R
dimV

f (ωV (B̂, t)) ¬ sup
t∈R

dimV
f (M(t)) ¬ − lnNν

ln (2(ν + λ)) + γ0t̃
,

where Nν = NW
ν
κ

(BV
1 (0)) provided that (H2) holds or Nν comes from (H2). Here the set

ωV (B̂, t) with B̂ = {B(t) : t ∈ R} is the pullback ω−limit set for the family B̂ at time t,
i.e.,

ωV (B̂, t) =
⋂
s¬t

clV
⋃
r¬s

U(t, r)B(r).

The above-mentioned theoretical results are illustrated, among others, by the nonau-
tonomous Chafee-Infante equation already considered in (22), but this time with the
Neumann boundary condition

ut = 4Nu+ λu− b(t)u3, t > s, x ∈ Ω,
∂u
∂~n

(t, x) = 0, t > s, x ∈ ∂Ω,
u(s, x) = u0(x), x ∈ Ω,

(23)

where Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω and s ∈ R, λ ­ 0, whereas
∂
∂~n

denotes the outward unit normal derivative on the boundary ∂Ω.
The key elements for our theory are properties of the nonautonomous term, that is

the function b : R→ (0,∞) of class C1 such that

(i) lim
t→−∞

b(t) = 0,

(ii) there exists β1 ∈ R such that b′(t)
b(t) ¬ β1, t ∈ R,
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(iii) there exist γ0 > 0, K > 0 and t0 ∈ R such that b(t) ­ Keγ0t for t ¬ t0.

Note that our assumption is less restrictive than the condition from [C-S2], i.e.,

lim
t→−∞

eγt

b(t)
= 0 for every γ > 0.

In particular, in the role of the function b one can take b(t) = Keγ0t with some K, γ0 > 0
for very negative t and extend b to the right so that (ii) holds.

To justify the existence of the evolution process {U(t, s) : t ­ s} on the space

V = Xα ⊂ {u ∈ C2α(Ω) :
∂u

∂~n
= 0 on ∂Ω} with

1
2
< α < 1,

being the fractional power space corresponding to the operator −4N considered in C(Ω),
we prove the a priori estimate in the space W = C(Ω). On the other hand, to obtain
a pullback absorbing family we apply the method of subsolutions and supersolutions. We
verify the assumptions of Theorem 3 and get

Theorem 4 ([3, Theorem 3.3]). The process {U(t, s) : t ­ s} on the space V generated by
(23) possesses a pullback exponential attractor {M(t) : t ∈ R} in V . In particular, there
exists the pullback global attractor {A(t) : t ∈ R} in V such that for any ν ∈ (0, 1

2e
− γ02 )

we have
A(t) ⊂M(t) =Mν(t) ⊂ B(t) ⊂ B̃(t), t ∈ R,

where

B̃(t) =

u ∈ V : ‖u‖W ¬
a√
b(t)

 , t ∈ R,

with a > 0 such that a2 ­ λ+ β1
2 , whereas

B(t) = clV U(t, t− 1)B̃(t− 1), t ∈ R,

and

diamV (B(t)) ¬ 2aκ(t)√
b(t− 1)

, t ∈ R and diamV (B(t)) ¬ 2aκ(t0)√
K

e
γ0
2 e−

γ0
2 t, t ¬ t0, (24)

where κ : R→ (0,∞) is some nondecreasing function. Moreover, the following estimate

sup
t∈R

dimV
f (A(t)) ¬ sup

t∈R
dimV

f (Mν(t)) ¬
− lnNW

ν
κ(t0)

(BV
1 (0))

ln (2ν) + γ0
2

holds.

Observe that if the initial condition u0 is a positive constant function, then the follo-
wing function independent of x

(U(t, s)u0)(x) =
eλt√

e2λsu−2
0 + 2

∫ t
s e

2λτb(τ)dτ
, t ­ s, x ∈ Ω,
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is a solution of the problem (23). Since A(t) pullback attracts the singleton {u0} for every
t ∈ R and U(t, s)u0 → ξ(t) in V as s→ −∞, where

ξ(t)(x) =
eλt√

2
∫ t
−∞ e

2λτb(τ)dτ
, x ∈ Ω,

it follows that ξ(t) ∈ A(t). The zero solution of the problem (23) also belongs to A(t),
hence

eλt√
2
∫ t
−∞ e

2λτb(τ)dτ
¬ diamV (A(t)) ¬ diamV (M(t)).

If λ > 0 then it follows from (i) that

diamV (A(t))→∞ and diamV (M(t))→∞ as t→ −∞.

In the particular case, when b(t) = Keγ0t, t ¬ t0, with constants γ0, K > 0, we have by
(24) √

2λ+ γ0

2K
e−

γ0
2 t ¬ diamV (A(t)) ¬ diamV (M(t)) ¬ 2aκ(t0)√

K
e
γ0
2 e−

γ0
2 t, t ¬ t0,

which shows that A(t) and M(t) grow exponentially in the past.
In the paper [3] I also consider general reaction-diffusion equations of the formut −4u+ f(t, u) = g(t), t > s, x ∈ Ω,

u(s, x) = u0(x), x ∈ Ω, u(t, x) = 0, t > s, x ∈ ∂Ω,
(25)

in a bounded domain Ω ⊂ RN with smooth boundary ∂Ω. I assume that f ∈ C1(R2,R),
g ∈ L2

loc(R, L2(Ω)) and there are constants p ­ 2, Ci > 0, i = 1, . . . , 5 such that the
growth condition

C1 |u|p − C2 ¬ f(t, u)u ¬ C3 |u|p + C4, u ∈ R, t ∈ R, (26)

holds and the derivative of the nonlinearity with respect to u is bounded below

fu(t, u) ­ −C5, u ∈ R, t ∈ R, f(t, 0) = 0, t ∈ R. (27)

This problem was investigated in many articles in different aspects. As refers to the
existence of the pullback global attractor, it was obtained in the space H1

0 (Ω) in the
paper [L-Z] if f does not depend on time and g has an exponential estimate of the form

‖g(t)‖2
L2(Ω) ¬M0e

α|t|, t ∈ R, (28)

with exponent 0 ¬ α < λ1 and M0 > 0, where λ1 > 0 is the first eigenvalue of the
considered Laplace operator with Dirichlet boundary condition. Later the same result
was obtained in the paper [ŁU] (cf. also [SO]) under a more general assumption than
(28): ∫ t

−∞
eλ1s ‖g(s)‖2

L2(Ω) ds <∞, t ∈ R.
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As refers to the uniform boundedness of the fractal dimension of the pullback global
attractor, it was proved in the space L2(Ω) in the paper [C-L-V], but only under the
additional assumption of f satisfying a global Lipschitz condition with the constant de-
pending on time, i.e., if there exists a positive and nondecreasing function ξ : R→ (0,∞)
such that

|f(τ, u)− f(τ, v)| ¬ ξ(t) |u− v| , τ ¬ t, u, v ∈ R, (29)

and under the assumption of a power growth of the perturbation g, i.e., if there exist
constants a, b > 0 and r ­ 0 such that

‖g(t)‖L2(Ω) ¬ a |t|r + b, t ∈ R.

In my paper [3] I assumed that f satisfies (26), (27) and (29), whereas g admits even
an exponential growth in the assumption (28).

Under these assumptions I verified the requirements of the abstract theory from [3,
Corollary 2.6], including the condition (H2), and proved in [3, Theorem 4.3] that the
considered problem (25) generates an evolution process in the space H1

0 (Ω) (and in L2(Ω)),
which has a pullback exponential attractor {M(t) : t ∈ R} in H1

0 (Ω) with sections being
nonempty compact subsets of H1

0 (Ω) and their diameters are bounded by an exponential
function with exponent α

2 |t|. If we choose t̃ > 0 and t0 ¬ 0 and by λn denote the sequence
of eigenvalues of the Laplace operator considered here, then there exists n ∈ N such that
the following inequality

λ :=
(
e−λn+1 t̃ + λ−1

n+1λ
−1
1 ξ2(t0)e2C5 t̃

) 1
2 <

1
2
e−

α
2 t̃ (30)

holds. Then we obtain explicitly an estimate of the fractal dimension M(t) =Mν(t)

sup
t∈R

dimH10 (Ω)
f (Mν(t)) ¬

−n ln
(
1 + 2ν−1e

1
2λ
−1
1 ξ2(t0)t̃

)
ln(2(ν + λ)) + α

2 t̃
(31)

for any sufficiently small ν. The family {M(t) : t ∈ R} pullback attracts at an exponential
rate each bounded set in L2(Ω) with respect to the Hausdorff semidistance in H1

0 (Ω).
Moreover, the process has the pullback global attractor {A(t) : t ∈ R} in H1

0 (Ω) with
uniformly bounded fractal dimension by the estimate from (31), which in particular, due
to the assumption (28), is a generalization of the results from the paper [C-L-V]. Finally,
it is worth mentioning that from the inequality (31) it follows, after further estimating
and passing to the limit with ν to 0, that

sup
t∈R

dimH10 (Ω)
f (A(t)) ¬ n,

where n ∈ N satisfies (30).
I presented the results of my studies on pullback exponential attractors, especially the

results of my paper [3], during lectures at international scientific conferences in Brazil,
Germany and Spain in 2014. I also announced the results during an invited lecture in
Centro de Matemática da Universidade do Porto in Portugal in 2013.
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Global attractors for impulsive dynamical systems

In 2014 I took a one-month secondment, as part of the program Brazilian-European
Partnership in Dynamical Systems (BREUDS), in Instituto de Ciências Matemáticas e de
Computação of the University of São Paulo in São Carlos, where together with Alexandre
Nolasco de Carvalho and Matheus Bortolan we started to study asymptotics of impulsive
dynamical systems. We jointly created a new notion of a global attractor for such systems
and together with Everaldo de Mello Bonotto prepared the article [4], which is a part of
the scientific achievement.

The theory of impulsive dynamical systems describes phenomena, where the continu-
ous evolution is interrupted by an abrupt change of state. In systems, which we dealt with,
these changes are state-dependent and do not occur in explicitly prescribed moments. Po-
ssible applications are for instance models of the Lotka-Volterra type with harvest (cull)
depending on the state of the population. An inspiration for our studies was the paper
[B-D] in which the authors tried to apply the standard definition of a global attractor to
problems with impulses ignoring a large class of impulsive dynamical systems.

Mathematical foundations of the mentioned theory come from papers of K. Ciesielski
(e.g. [CI1]) and S. Kaul (e.g. [KA]), where the notions of a section and tube, used by
us, were formulated. An impulsive dynamical system consists of a continuous semigro-
up {π(t) : t ­ 0} on a metric space (X, d), a nonempty closed subset M ⊂ X, called
an impulsive set, such that for every x ∈M there exists εx > 0 such that

F (x, (0, εx)) ∩M = ∅ and
⋃

t∈(0,εx)

{π(t)x} ∩M = ∅, (32)

where
F (D, J) =

⋃
t∈J

π(t)−1(D), D ⊂ X, J ⊂ [0,∞),

and a continuous function I : M → X, called an impulsive function. The condition (32)
means some kind of transversality of the semigroup in regard to the set M .

We define the function φ : X → (0,∞] of the smallest positive time for a point x ∈ X
to reach the set M by

φ(x) =

s if π(s)x ∈M and π(t)x /∈M for 0 < t < s,

∞ if
⋃
t>0{π(t)x} ∩M = ∅.

(33)

The impulsive function I is used to construct the impulsive semigroup {π̃(t) : t ­ 0} on
X which, apart from satisfying the conditions

π̃(t+ s) = π̃(t)π̃(s), t, s ­ 0, π̃(0) = Id,

is usually discontinuous. An impulsive trajectory t 7→ π̃(t)x of a point x ∈ X coincides
with the trajectory t 7→ π(t)x until it reaches the set M for the first time. Then a jump
occurs in accordance with the function I : M → X and from the new point the evolution
follows the semigroup {π(t) : t ­ 0} again until it reaches the set M anew, and so on (cf.
the details in [4]). In the paper we assume that the semigroup {π̃(t) : t ­ 0} is well-defined,
which is true for example if φ(z) ­ ξ > 0 for every z ∈ I(M).

Even a simple example [4, Example 1.5] shows that the requirements regarding the
attractor from the paper [B-D] are too restrictive. We introduce a new definition of the
global attractor for an impulsive dynamical system (X, π,M, I).

16



Definition 5 ([4, Definition 1.6]). A subset A ⊂ X is called the global attractor for
an impulsive dynamical system (X, π,M, I) if it satisfies the following conditions:

(i) A is precompact (i.e., its closure in X is compact) and A = clX A \M ,

(ii) A is π̃−invariant, i.e., π̃(t)A = A, t ­ 0,

(iii) A π̃−attracts every bounded set B in X, i.e.,

distX(π̃(t)B,A) = sup
x∈B

inf
y∈A

d(π̃(t)x, y)→ 0 as t→∞.

It is easy to see that such an object is uniquely determined. Moreover, by this definition
the system from [4, Example 1.5] possesses the global attractor with unusual properties
in comparison with continuous semigroups: the attractor is not connected, consists of two
isolated invariant sets – a periodic orbit and a stationary point, without a connecting
orbit in the attractor, whereas orbits reach the periodic orbit in a finite time. This makes
such objects worth studying more thoroughly.

The aim of the paper [4] was to create counterparts of known classical theorems for
global attractors from Definition 5 for impulsive dynamical systems.

We showed in [4, Proposition 4.3] that the attractor consists of points through which
passes a bounded complete π̃−orbit, which corresponds to [C-D, Corollary 1.1.1 (iii)].

Similarly in [4, Proposition 4.4] we proved that the global attractor is the union of
impulsive ω−limit sets (cf. [4, Definition 3.1 and Lemma 3.2]) of bounded subsets of X
with points of M removed. This is a counterpart of the result [C-D, Corollary 1.1.1 (i)].

In [4, Proposition 4.5] we noticed that the global attractor for an impulsive dynamical
system is minimal among all subsets K ⊂ X satisfying K = clX K \M which π̃−attract
all bounded subsets of X, which resembles the observation [C-D, Observation 1.1.3].

The theorem [4, Theorem 4.7] is the main result of the paper in which we prove the
existence of the global attractor for strongly dissipative impulsive dynamical systems. It
constitutes a counterpart of the theorem [RO, Theorem 10.5].

Definition 6 ([4, Definition 4.6]). An impulsive dynamical system (X, π,M, I) is called
strongly dissipative if there exists a nonempty precompact set K in X such that K∩M =
∅, which π̃-absorbs all bounded sets in X, i.e., for any bounded set B in X there exists
tB > 0 such that π̃(t)B ⊂ K for all t > tB.

Theorem 7 ([4, Theorem 4.7]). Let (X, π,M, I) be a strongly dissipative impulsive dyna-
mical system with the π̃−absorbing precompact set K, satisfying I(M)∩M = ∅ and such
that every point of M satisfies the condition (SSTC) (see the details in [4, Definition 2.3])
and φ(z) ­ ξ > 0 holds for all z ∈ I(M). Then (X, π,M, I) possesses the global attractor
A and we have

A = ω̃(K) \M. (34)

The proof of Theorem 7 comes down to the verification of the properties from Defini-
tion 5 for the set given in (34). It is not, however, an easy task and requires development of
the theory of impulsive ω−limit sets, which was done in the third, fundamental section of
the paper [4]. The first step consisted in proving the positive invariance of sets of the form
ω̃(B)\M , which was done in [4, Proposition 3.7] under the assumption that the points of
M satisfy the so called strong tube condition (STC) coming from papers of K. Ciesielski
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and S. Kaul (cf. [4, Definition 2.3]). This condition guarantees among others the upper
semicontinuity of the function φ in X and its continuity in X \M (cf. [CI2, Theorem
3.8]). It is more difficult to show the negative invariance of sets of the form ω̃(B) \M .
To this end, I suggested introducing the special strong tube condition (SSTC) from [4,
Definition 2.3], which helped to prove the negative invariance ([4, Proposition 3.12]) as
well as π̃−attraction by sets of the form ω̃(B) \M ([4, Proposition 3.14]).

The last fourth section of the paper [4] was written together with Everaldo de Mello
Bonotto and contains an illustration of the presented theory for systems of ordinary
differential equations on the plane, autonomous systems in RN and for nonlinear reaction-
diffusion equations with Dirichlet boundary condition. The problem for planar systems,
although very simple, shows that our abstract assumptions can be verified in concrete
cases. For systems of ordinary differential equations in RN as well as initial boundary
value problems for reaction-diffusion equations of the formut −∆u = f(u), t > 0,

u|∂Ω = 0, t > 0, u(0) = u0 ∈ L2(Ω),

with an impulsive function, we formulate sufficient conditions for the generated impulsive
dynamical systems to be strongly dissipative and in accordance with Theorem 7 to possess
the global attractors in the sense of Definition 5.

I presented the results of the paper [4] described above during my lectures at the
VII Symposium on Nonlinear Analysis at the Nicolaus Copernicus University in Toruń
in 2015 and during the 6th IST-IME Meeting in Lisbon in 2016. I also presented them
during my invited lecture at the Faculty of Mathematics, Informatics and Mechanics at
the University of Warsaw in 2015.

The paper [4] lays foundations for the study of structural stability for impulsive dy-
namical systems. In the paper [12] we show that, under certain collective tube condi-
tions, the global attractors Aη, η ∈ [0, 1], for the family of impulsive dynamical systems
(X, πη,Mη, Iη), η ∈ [0, 1], are upper semicontinuous at η = 0, i.e.,

lim
η→0

distX(Aη,A0) = 0. (35)

Aspects of structural stability

The paper [5], which is a part of the scientific achievement, was written by me together
with Carlos Rocha during my postdoctoral fellowship in the Instituto Superior Técnico in
Lisbon in years 2005-2007. It concerns the transversality of stable and unstable manifolds
of hyperbolic periodic orbits for scalar reaction-diffusion equations with periodic boundary
condition.

The notion of transversality of invariant manifolds of critical elements plays an im-
portant role in theorems on generic properties, i.e., the ones which hold on a residual
set, that is, a countable intersection of open dense sets. As an example serves here the
Kupka-Smale theorem (cf. [P-M, Chapter 3], [SZ, Twierdzenie 3.7.1]) on the residuality of
the set of the so called Kupka-Smale vector fields in the space of Cr, r ­ 1, vector fields
on a compact differential manifold. Let us recall that a vector field X on a compact diffe-
rential manifold has the Kupka-Smale property if all critical points and periodic orbits for
X are hyperbolic and their invariant manifolds intersect transversally. The transversality
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of invariant manifolds of critical elements is also the foundation of theorems on structu-
ral stability. We say that a vector field X of class Cr, r ­ 1, on a compact differential
manifold M is structurally stable if there exists a neighborhood U of the vector field X
such that each vector field Y ∈ U is topologically equivalent to X, that is, there exists
a homeomorphism of the manifold M , which takes orbits of X into orbits of Y preserving
their orientation. We say that (cf. [P-M, Chapter 4]) a vector field X of class Cr, r ­ 1,
on M is the Morse-Smale vector field if X has finitely many critical elements all of them
being hyperbolic, their invariant manifolds intersect transversally and the set of nonwan-
dering points is the union of all critical elements. J. Palis and S. Smale proved in [PA],
[P-S] that Morse-Smale vector fields form an open set in the space of Cr, r ­ 1, vector
fields on M and are structurally stable.

For semigroups the theorem on the A-structural stability of the Morse-Smale semigro-
ups was proved by W.M. Oliva (cf. [OL], [H-M-O, Chapter 6]). It is assumed that F is
a topological space of parameters for semigroups {Tf (t) : t ­ 0} of class Ck on a Banach
space X, which possess global attractors Af in X, the mapping F 3 f 7→ Af ∈ X is
upper semicontinuous and Tf (t)|Af and DTf (t)|Ab(DTf ) are one-to-one for t ­ 0. Among
f ∈ F we distinguish f ∈ MS for which the semigroup {Tf (t) : t ­ 0} on X is the
Morse-Smale semigroup, i.e., it has finitely many critical elements (stationary points and
periodic orbits) all of them hyperbolic, their union forms the set of nonwandering points
and the unstable manifolds of critical elements have finite dimension and intersect trans-
versally with local stable manifolds. Then the set MS is open in F and each f ∈ MS is
A-structurally stable, i.e., there exists a neighborhood U of the parameter f ∈ F such
that for every g ∈ U we have a homeomorphism h = h(g) : Af → Ag which takes the
orbits in Af to orbits in Ag preserving their orientation.

One of the first examples of infinite-dimensional Morse-Smale semigroups generated
by partial differential equations come from the papers of D. Henry [HE2] and S. Angenent
[AN1] and concern scalar semilinear parabolic equations with boundary conditions of Di-
richlet or Neumann type for which the only critical elements are stationary solutions. In
particular, this also refers to the Chafee-Infante equation. The problem of the automatic
transversality of intersections of invariant manifolds for stationary points was also con-
sidered in the paper [C-C-H] for the nonautonomous (periodic in time) scalar semilinear
parabolic equation with nonlinearity depending only on time, the space variable and the
solution with the homogeneous Dirichlet boundary condition as well as for problems in
symmetric domains in RN in the paper [PO]. In the paper [F-O] the automatic transver-
sality of invariant manifolds for stationary points and periodic orbits was proved in the
case of special classes of systems of ordinary differential equations.

In our paper [5] we consider the following scalar reaction-diffusion equation with pe-
riodic boundary conditions and the nonlinearity f : S1 ×R×R→ R depends on x ∈ S1,
the solution u and its spatial derivative, i.e.,ut = uxx + f(x, u, ux), x ∈ S1 = R/2πZ,

u(0, x) = u0(x), x ∈ S1.
(36)

We assume that f is C2 and has subquadratic growth with respect to ux, i.e.,

there exists 0 ¬ γ < 2 and a continuous function k : [0,∞)→ [0,∞) such that
|f(x, y, z)| ¬ k(r)(1 + |z|γ), (x, y, z) ∈ S1 × [−r, r]× R for every r > 0,
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and it satisfies the dissipativity condition

yf(x, y, 0) < 0, (x, y) ∈ S1 × R, |y| ­ K for some K > 0.

If we fix α ∈ (3
4 , 1) then the fractional power space Xα = H2α(S1) corresponding to the

operator Au = −uxx +u in L2(S1) is embedded into the space of C1 functions on a circle.
Under the assumptions on f each Xα solution of the problem (36) exists globally in time
and we can construct the semigroup {T (t) : t ­ 0} of global Xα solutions. This semigroup
is compact and point dissipative, so it possesses the global attractor A in Xα, which is
the union of all bounded complete orbits, i.e., defined on R. Moreover, in [5, Section 3]
we show that every operator T (t) is injective, the linearization along each solution defines
a linear evolution process on Xα formed by compact bounded operators and each such
operator is injective and has a dense range.

Having the global attractor we would like to know its structure. In the papers [A-F]
and [F-R-W] it was proved that if the nonlinearity f does not depend explicitly on x, then
the attractor consists exclusively of stationary points and the so called rotating waves,
i.e., orbits of periodic solutions of the form

u(t, x) = v(x− ct), t ∈ R, x ∈ S1 with some c 6= 0,

and heteroclinic connections between these critical elements, all of them assumed to be
hyperbolic. However, from the paper [S-F] it follows that in the case when the nonlinearity
f depends explicitly on x, in the attractor may also appear homoclinic orbits. The first
aim of our paper [5] was to prove that such a homoclinic connection cannot occur for
a hyperbolic periodic orbit. The other aim was to prove that if we have two distinct
hyperbolic periodic orbits, then their stable and unstable manifolds intersect transversally,
i.e., the tangent spaces to these manifolds at each point of intersection complement to the
whole space Xα.

The main tool used in the proofs is the theory of the so called zero number of a C1

function developed by H. Matano [MA] (see also [B-F], [AN2]) and connected with classical
results of C. Sturm [ST]. If we denote by z(ϕ) the (even) number of strict sign changes
of a C1 function ϕ : S1 → R, then (see [5, Lemmas 3.1, 3.2] and [M-N, Lemmas 3.2,
3.4]) for two different Xα solutions of the problem (36) on an interval J their difference
v(t) = u1(t)− u2(t), t ∈ J , satisfies the conditions:

(i) z(v(t)) is finite for every t ∈ J ,

(ii) z(v(t)) is a nonincreasing function of t on J ,

(iii) z(v(t)) strictly decreases at t = t0 if and only if there exists x0 ∈ S1 such that

v(t0)(x0) = 0, ∂xv(t0)(x0) = 0.

The other important element of our considerations are spectral properties of the so
called period map (cf. [HE1, Definition 7.2.1], [5, Section 4]) Tω for the linearization of our
equation along a periodic solution p with period ω > 0 which determines the periodic orbit
Π. The operator Tω corresponds to the monodromy matrix for linear ordinary differential
equations with periodic coefficients. Similarly to the classical theory, its eigenvalues are
called characteristic multipliers. If we put them in a sequence {λj}j­0 counting algebraic
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multiplicities and ordering them by the inequality |λj+1| ¬ |λj|, then by the paper [A-F]
we know that |λ2j+1| < |λ2j| for all j ­ 0. In other words, denoting by Ej(Π) the real
generalized eigenspace corresponding to {λ2j−1, λ2j} for j ­ 1 and by E0(Π) the real
eigenspace corresponding to the isolated eigenvalue λ0, we know that dimE0(Π) = 1 and
dimEj(Π) = 2, j ­ 1. Moreover, it follows from [A-F, Theorem 2.2] that any nonzero
function φ ∈ Ej(Π), j ­ 0, has only simple zeros and z(φ) = 2j.

We distinguish the elements of the spectrum lying inside the unit circle, on the unit
circle and outside the unit circle. The number of the latter ones counted with multiplicities
we denote by i(Π) and call the Morse index of the periodic orbit Π.

We study the situation where the periodic orbit Π is hyperbolic, that is, the corre-
sponding period map Tω has 1 as a characteristic multiplier which is a simple eigenvalue
and unique on the unit circle. Then the corresponding eigenfunction is pt(0).

First we consider the local stable manifold W s
loc(Π) for a hyperbolic periodic orbit Π

with period ω > 0. The main result of this part is [5, Theorem 5.2].

Theorem 8. For an initial condition u0 ∈ W s
loc(Π) \ Π there exist a phase a ∈ Π and

κ > 0 such that
lim
t→∞

eκt ‖T (t)u0 − T (t)a‖Xα = 0

and, for 2N = z(pt(0; a)) with p(t; a) = T (t)a, we have

z(u0 − a) ­

i(Π) + 1 = 2N if i(Π) = 2N − 1,
i(Π) + 2 = 2N + 2 if i(Π) = 2N.

(37)

Next, we study the unstable manifold W u(Π) and similarly as before we obtain the
following result in [5, Theorem 6.2].

Theorem 9. For any u0 ∈ W u(Π) \ Π there exist a phase a ∈ Π and κ′ > 0 such that

lim
t→∞

eκ
′t
∥∥∥T (t)−1u0 − T (t)−1a

∥∥∥
Xα

= 0

and, for 2N = z(pt(0; a)) with p(t; a) = T (t)a, we have

z(u0 − a) ¬

i(Π)− 1 = 2N − 2 if i(Π) = 2N − 1,
i(Π) = 2N if i(Π) = 2N.

(38)

Both these results lead to the exclusion of existence of a homoclinic orbit for a hy-
perbolic periodic orbit. Indeed, consider two (not necessarily distinct) hyperbolic periodic
orbits Π− and Π+ with periods ω− > 0 and ω+ > 0, respectively. We assume that there
exists a point

u0 ∈ (W u(Π−) ∩W s
loc(Π

+)) \ (Π− ∪ Π+).

In particular, if Π− = Π+ then u0 lies on a homoclinic orbit for the periodic orbit. It follows
from the above-mentioned theorems that there exist corresponding phases a± ∈ Π± and
corresponding periodic solutions p± such that∥∥∥u(t;u0)− p+(t; a+)

∥∥∥
Xα
→ 0 and

∥∥∥u(−t;u0)− p−(−t; a−)
∥∥∥
Xα
→ 0 as t→∞.

Furthermore, we have
z(u0 − a−) ­ z(u0 − a+),

which together with the estimates (37) and (38) for the orbits Π± implies one of the two
main results of the paper [5].
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Theorem 10 ([5, Theorem 7.3]). Denoting 2N± = z(p±t (0; a±)), the following inequalities

N− ­ N+ and i(Π−) ­ i(Π+) + 1

hold, which excludes the existence of a homoclinic connection for a hyperbolic periodic
orbit for (36). Moreover, if i(Π+) = 2N+ then we even have

N− ­ N+ + 1.

The other main result of the paper [5] is the automatic transversality of intersection
of the unstable manifold and stable manifold for two distinct hyperbolic periodic orbits
for the problem (36) obtained in [5, Theorem 8.2].

Theorem 11. The stable and unstable manifolds for two hyperbolic periodic orbits Π±

for the problem (36) have a transversal intersection

W u(Π−) ∩ W s
loc(Π

+),

i.e., if u0 ∈ T (τ)W u
loc(Π

−) ∩W s
loc(Π

+) for some τ ­ 0, then

Tu0T (τ)W u
loc(Π

−) + Tu0W
s
loc(Π

+) = Xα.

The proof is based on ideas coming from the paper [C-C-H]. We denote the respective
phases by a± as above and the periodic solutions by p±. Let 2N± be the zero numbers of
eigenfunctions corresponding to the characteristic multipliers 1. In the proof we use the
following observation: for nonzero functions from the tangent subspace at u0 to the local
stable manifold for Π+ the zero number is greater or equal to 2N+. Moreover, there exists
a subspace W+ of the tangent space at u0 to the local stable manifold of the orbit Π+ with
codimension 2N+ +1 and the zero number greater or equal to 2N+ +2. Next, we consider
two cases according to the Morse index for the orbit Π+. Let i(Π+) = 2N+ − 1. Then
the codimension of the local stable manifold is 2N+ − 1. Since by Theorem 10 we have
N− ­ N+, we know that the direct sum E0⊕ . . .⊕EN+−1 of the subspaces corresponding
to the point a− is a subspace of the tangent space to the unstable manifold for Π− at
a−. Moreover, the zero number for nonzero functions from this space does not exceed
2N+ − 2. Since we are on a C1 submanifold of Xα and the sequence u(−mω−) converges
to a− as m → ∞, there exists for large m a subspace of the tangent space at u(−mω−)
to the unstable manifold with the same dimension and the same zero number estimate.
Furthermore, we move to the point u0 using the evolution operators for the linearization
along the connecting solution u. Since these operators are one-to-one and do not increase
the zero number, we obtain a subspace of the tangent space to the unstable manifold at u0

with dimension equal to the codimension of the local stable manifold. Additionally, this
space has a trivial intersection with the tangent space to the stable manifold at u0 due to
the zero number estimates. This shows that in this case the tangent spaces complement
to the whole space Xα.

The analysis of the case i(Π+) = 2N+ is similar, but this time we use the inequality
N− ­ N+ + 1 from Theorem 10 and from the tangent space to the local stable manifold
at u0 we choose the subspace W+ with codimension 2N+ + 1. This again implies that the
tangent spaces complement to the whole space Xα also in this case.

I presented the above-mentioned results of the paper [5] among others at the conference
ICMC Summer Meeting on Differential Equations 2008 Chapter at the Universidade de
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São Paulo in São Carlos in Brazil. During this conference R. Joly delivered a lecture on the
results of his joint research with G. Raugel, published later in the paper [J-R1], in which
he presented the proof of genericity of hyperbolic stationary points and periodic orbits for
scalar parabolic equations of the form (36) with f from the space F = C2(S1×R×R,R)
endowed with the Whitney topology (see [J-R1, Theorem 1.2]). In the joint discussion of
four authors we noticed that the argument which I described above can be immediately
applied to the case of the intersection of stable and unstable manifolds if one of the critical
elements is a hyperbolic stationary point and the other one is a hyperbolic periodic orbit.
Thus also in this case the automatic transversality of invariant manifolds holds, which
was later published in [J-R2, Theorem 4.2]. In [J-R2] the authors also proved for (36)
the automatic transversality of invariant manifolds of hyperbolic stationary points with
distinct Morse indices and the fact that the absence of connections between stationary
points with the same Morse index is a generic property. Consequently, this leads to the
genericity of the Morse-Smale property for scalar parabolic equations on a circle of the
form (36) proved in [J-R2, Theorem 1.6].

5. Other scientific research achievements

List of other papers and monographs:

[6] Radosław Czaja, Differential Equations with Sectorial Operator, Wydawnictwo Uni-
wersytetu Śląskiego, Katowice, 2002, ISBN 83-226-1164-1.

[7] Radosław Czaja, Dynamically equivalent perturbations of linear equations, Demon-
stratio Mathematica 37 (2004), 327–348.

[8] Radosław Czaja, Asymptotics of parabolic equations with possible blow-up, Collo-
quium Mathematicum 99 (2004), 61–73.

[9] Jan W. Cholewa, Radosław Czaja, Gianluca Mola, Remarks on the fractal dimension
of bi-space global and exponential attractors, Bollettino dell’Unione Matematica
Italiana (9) 1 (2008), 121–145.

[10] Radosław Czaja, Messoud Efendiev, A note on attractors with finite fractal dimen-
sion, Bulletin of the London Mathematical Society 40 (2008), 651–658.

[11] Radosław Czaja, Bi-space pullback attractors for closed processes, São Paulo Jour-
nal of Mathematical Sciences 6, 2 (2012), 227–246.

[12] Everaldo de Mello Bonotto, Matheus Cheque Bortolan, Rodolfo Collegari, Radosław
Czaja, Semicontinuity of attractors for impulsive dynamical systems, Journal of
Differential Equations 261 (2016), 4338–4367.

[13] Radosław Czaja, Pedro Maŕın-Rubio, Pullback exponential attractors for parabolic
equations with dynamical boundary conditions, Taiwanese Journal of Mathematics,
article in press, available online since December 20, 2016 at
http://journal.tms.org.tw/~journal/tjm/201612/m455-7862-preview.pdf

The monograph [6] is an extension of my master thesis which won a commendation
in the Józef Marcinkiewicz competition organized by the Polish Mathematical Society. It
is devoted to the theory of strongly continuous linear semigroups with special emphasis
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on analytic semigroups and their role in the modern approach to differential equations. It
contains an original lecture concerning generation of analytic semigroups by unbounded
linear operators in Banach spaces. Especially worthy of note is the precision of the the-
orem ([6, Theorem 2.2.7]) on the necessary and sufficient condition for a linear operator
to generate analytic semigroup. In the subsequent part of the publication I present the
theory of powers of positive sectorial operators (cf. [HE1], [AM], [LU]) laying the good
foundations to study the existence and uniqueness of solutions of abstract differential equ-
ations. Following the monographs [PZ], [HE1] and [C-D], I present in [6, Chapter 4] the
theory of the existence and uniqueness of solutions of nonhomogeneous linear equations
in Banach spaces and semilinear equations with a sectorial operator in the main part with
the right-hand side which is nonlinear with respect to the solution we are looking for. The
latter type of equations is particularly important from the point of applications to pa-
rabolic semilinear systems of partial differential equations arising from the mathematical
physics as for example the renowned Navier-Stokes system. This is the type of equations
to which I later devoted most of my scientific career. I am glad that this monograph, tho-
ugh with scarce circulation, helped master and Ph.D. students in their further individual
research in Poland as well as abroad (see e.g. [SI], [A-O]).

In the paper [7] I studied nonlinear autonomous perturbations of abstract parabolic
equations with a sectorial operator A of the form

ut + Au = Fλ(u), t > 0, (39)

for which there exist global attractors Aλ independent of the parameter λ. This problem
refers to the notion of synchronized semigroups {Tλ(t) : t ­ 0} for (39) considered in
the paper [HA2]. The key condition of my main result [7, Theorem 2.6], ensuring the
existence of the common attractor for the family of autonomous equations (39), was
to indicate continuous functions distinguishing stationary solutions and constant along
trajectories. I verified the assumptions of the mentioned theorem in the case of a scalar
second order equation with Neumann boundary condition ([7, Example 3.1]) and in the
case of the Cahn-Hilliard system modeling phase separation of a multi-component alloy:

ut(t, x) = −4 [Γ4u(t, x)−∇uλ(u(t, x))] , t > 0, x ∈ Ω,
∇u(t, x)~n(x) = ∇(∆u(t, x))~n(x) = 0, t > 0, x ∈ ∂Ω,
u(0, x) = u0(x), x ∈ Ω,

where u : [0,∞) × Ω → Rm, uT = (u1, . . . , um), Γ ∈ Rm×m is a positively defined sym-
metric matrix and Ω is a bounded domain in RN with N ¬ 3 and the boundary ∂Ω of
class C4+ε. In the considered problem the role of parameters λ is played by functions of
class C3+Lip(Rm), which are bounded below and convex. Then the attractors Aλ coincide
with the attractor A0 for the linear problem and consist of all functions constant almost
everywhere in Ω with absolute value not exceeding some constant conditioned by the
considered phase space (cf. [7, Example 3.3]).

The paper [8] concerns the description of the asymptotic behavior of solutions admit-
ting blow-up of some of them for the problemut + Au = F (u), t > 0,

u(0) = u0,
(40)
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where A is a sectorial operator with a compact resolvent and the right-hand side F : Xα →
X fulfills the Lipschitz condition on bounded subsets of the fractional power space Xα

corresponding to the operator A. I admit the situation where for some initial data u0

the norm of the solution in the space Xα becomes unbounded in finite of infinite time.
I introduce the natural phase space

V = {u0 ∈ Xα : sup
t∈[0,∞)

‖u(t;u0)‖Xα <∞},

I assume that V 6= ∅ and define the semigroup {T (t) : t ­ 0} of global Xα solutions of
(40) on the space V . Despite the compactness of the resolvent of the operator A, the
compactness of this semigroup is not guaranteed, since we do not know a priori whether
V is a closed subset of Xα. Nevertheless, my assumptions allow to prove that the ω−limit
sets of sets with bounded positive orbits are nonempty, compact and invariant.

I consider the set S of all points from V through which passes a bounded complete
orbit for the semigroup {T (t) : t ­ 0}. In [8, Theorem 2.5] I prove that S is nonempty,
invariant and attracting every subset of V with bounded positive orbit. Moreover, if S is
bounded then S is a compact set and a maximal bounded and invariant set. If we assume
additionally that positive orbits of bounded sets in V are bounded or V is a closed subset of
Xα, then S is the global attractor for the semigroup {T (t) : t ­ 0} in V . Hence I conclude
([8, Corollary 2.6]) that if all bounded complete orbits of points are uniformly bounded
in Xα, then every Xα solution of the problem (40) either blows up in finite or infinite
time or stays bounded in Xα and is attracted by a maximal compact and invariant set.
These results are illustrated by two examples. The first of them (cf. [8, Example 3.1]) is
the Frank-Kamenetskii equation with Dirichlet boundary condition being a model in the
combustion theoryut = ∆u+ λeu, t > 0, x ∈ B1(0) ⊂ RN ,

u(t, x) = 0, t > 0, x ∈ ∂B1(0), u(0, x) = u0(x), x ∈ B1(0).
(41)

It follows from the paper [FU] that for small λ > 0 and some initial conditions the solution
of (41) blows up in finite time. Considering the one-dimensional case I justified in my
paper that the solutions which stay bounded are attracted by the maximal compact and
invariant set consisting of two stationary solutions and a heteroclinic orbit connecting both
the solutions. The other example concerns the set S for the N−dimensional Navier-Stokes
system for a viscous incompressible fluid under a small external force (cf. [8, Example 3.2]).

In the paper [9] together with Jan W. Cholewa we studied applications of the smo-
othing property to estimating fractal dimension of the bi-space global attractor, which is
a generalization of the classical notion of the global attractor considered e.g. in the mo-
nograph [B-V], and to the introduction of the notion of a bi-space exponential attractor.
In [9, Lemma 2.1] we showed some generalization of the known lemma [M-P, Lemma 1.3]
to estimate fractal dimension of negatively invariant sets, which, together with the result
on the existence of the bi-space global attractor ([9, Corollary 2.3]), leads to theorems [9,
Theorem 2.5, Corollary 2.6] on the existence of the bi-space global attractor with finite
fractal dimension. Referring to the construction from the paper [E-M-Z], we proved in [9,
Proposition 2.7, Corollary 2.8] the existence of a bi-space exponential attractor for dis-
sipative semigroups which can be decomposed for large times into a contracting part in
a weak space and into the smoothing part on the absorbing set. Moreover, in [9, Corollary
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2.9] the existence of an exponential attractor was proved for the semigroup satisfying the
smoothing property.

The examples contained in [9] are the essential element of the paper. In the first of
them we show the existence of an (Xα − Xβ) exponential attractor with β ∈ (α, 1) for
the abstract semilinear problem of the form (40) with a sectorial operator A with a com-
pact resolvent, which contains the (Xα −Xβ) global attractor of finite fractal dimension
(cf. [9, Theorem 3.2]). Further examples concern specific problems for partial differential
equations. We apply the above-mentioned theorem to reaction-diffusion equations with
subquadratic growth for the gradient and to the wave equation with the damping opera-
tor (−∆D)

1
2 . Moreover, applying [9, Corollary 3.3] which is a corollary of [9, Lemma 2.1],

we derive estimates of the fractal dimension of the global attractor for the Cahn-Hilliard
equation ([9, Corollary 3.9]) and the global attractor for higher order parabolic equations
with elliptic operators of order 2m in the main part ([9, Corollary 3.10]). An interesting
application of [9, Lemma 2.1] is its use in [9, Theorem 3.8] to estimating the fractal di-
mension of the global attractor in the space H1

0 (Ω) × L2(Ω) for the wave equation with
the damping operator (−∆D)

utt −∆Dut −∆Du = f(u), t > 0, x ∈ Ω ⊂ R3 bounded ,

u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Ω,
u(t, x) = 0, t ­ 0, x ∈ ∂Ω,

(42)

with the dissipative nonlinearity f ∈ C2(R,R) satisfying the critical growth condition

∃c>0 |f ′′(s)| ¬ c(1 + |s|3), s ∈ R.

The difficulty in this case lies in the noncompactness of the resolvent of the sectorial
operator for the abstract Cauchy problem generated by (42). The last example from the
paper [9] was written by Gianluca Mola and concerns the existence of an exponential
attractor, containing the finite-dimensional global attractor, for a nonparabolic problem
with memory.

During my postdoctoral fellowship in the Instituto Superior Técnico in Lisbon I met
Messoud Efendiev from the Helmholtz Center Munich in Germany and started the scien-
tific collaboration with him. Its first effect was the paper [10] in which we created a tool
([10, Theorem 2.1]) to estimate the fractal dimension of an invariant set, e.g. the global
attractor. It is based on the smoothing property again, but instead of compactly em-
bedding the smoother space into the base space, we assume here that it is compactly
embedded into some auxiliary space Z. This result is a generalization of the results regar-
ding estimates of the dimension of the attractor from the papers [M-P, Lemma 1.3] and
[E-M-Z, Proposition 1]. Moreover, we show in [10, Theorem 3.2] that identical estimates
on a positively invariant set allow to prove the existence of an exponential attractor for
a mapping as well as for a semigroup, after adding supplementary appropriate condition
on its continuity (see [10, Corollary 3.5]). The scientific contact with Messoud Efendiev
became fruitful in the form of other two joint papers [1, 2] on exponential attractors for
nonautonomous problems, which have been described in the part regarding the scientific
achievement.

The existence of the global attractor for a semigroup is shown using some kind of its
continuity. It turns out, however, that it suffices to assume closedness for this purpose
(cf. [P-Z]) or even only asymptotic closedness of the operators forming the semigroup
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(cf. [C-R]). These approaches were an inspiration to write my paper [11] on the pullback
global attractors for closed evolution processes. This paper is a study of conditions which
lead to the existence of the bi-space (V −W ) pullback global D−attractor, which attracts
all elements of some universe D, i.e., distinguished families of sets D̂ = {D(t) : t ∈ R}
(cf. [11, Definition 2.2]). In the classical framework the universe D is made of families
given by all bounded sets in the phase space V .

First I investigate equivalent statements for the asymptotic compactness of the pro-
cess (see [11, Definitions 2.3, 2.4]), which implies nonemptiness, compactness and pullback
attraction for sets forming the ω−limit family {ωW (D̂, t) : t ∈ R} for D̂ ∈ D ([11, Propo-
sition 2.6]). In particular, in reflexive and strictly convex Banach spaces the asymptotic
compactness of the process is also equivalent ([11, Propositions 2.8, 2.10]) to the flattening
condition (cf. [11, Definition 2.7]), used in applications to verify the asymptotic compact-
ness. Next, I use the asymptotic compactness together with the asymptotic closedness of
the process ([11, Definition 2.11]) and the pullback dissipativity ([11, Definition 2.13]) to
show invariance of ω−limit families in [11, Proposition 2.15]. In the main theorem of the
paper [11, Theorem 2.16] I show that if, additionally, the process is closed, then there
exists a bi-space pullback global D−attractor

A(t) = clW
⋃
D̂∈D

ωW (D̂, t) ⊂ ωW (B̂0, t), t ∈ R,

where B̂0 is the family absorbing D in the pullback sense. In the case of B̂0 ∈ D the
assumption on the closedness of the process can be weakened by supposing just the
asymptotic closedness (cf. [11, Corollary 2.17]). Then we have A(t) = ωW (B̂0, t), t ∈
R. The theory is illustrated by the Dirichlet problem for the nonautonomous reaction-
diffusion equationut = ∆u− f(u) + g(t), t > s, x ∈ Ω ⊂ RN bounded ,

u(t, x) = 0, t > s, x ∈ ∂Ω, u(s, x) = u0(x), x ∈ Ω,

presented in the paper [ŁU], for which there exists the (L2(Ω)−H1
0 (Ω)) pullback global

D−attractor with the universe

D = {D̂ = {D(t) ⊂ L2(Ω) : t ∈ R} : lim
s→−∞

eλ1s sup{‖u‖2
L2(Ω) : u ∈ D(s)} = 0},

which is stated in [11, Theorem 3.4].
In the paper [12], written jointly with Everaldo Bonotto, Matheus Bortolan and Rodol-

fo Collegari, we consider the problem of the influence of small perturbations of impulsive
dynamical systems on their asymptotic behavior described with the aid of precompact
global attractors in the paper [4] presented in the part devoted to the scientific achieve-
ment. Although the remarkable feature of impulsive semigroups {π̃η(t) : t ­ 0} is their
discontinuity, the study of continuous dependence of precompact global attractors in the
sense of Hausdorff semidistance is not meaningless if the elements generating the impul-
sive dynamical system depend continuously on the parameter. To this end, we consider
a family of impulsive dynamical systems {(X, πη,Mη, Iη)}η∈[0,1] and assume the continuity
at η = 0 of the continuous semigroups {πη(t) : t ­ 0} uniformly on compact subsets of
[0,∞) × X, the continuity at η = 0 of the impulsive sets Mη w.r.t. the Hausdorff di-
stance, joint continuity at zero of the impulsive functions Iη : Mη → X and suppose that
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the impulsive sets and their images by the impulsive functions are disjoint for small per-
turbations. Moreover, we define collective tube conditions (cf. [12, Definitions 3.3, 3.4]),
being an extension of the conditions known from the papers [CI2, 4], which describe the
behavior of the semigroups πη near the impulsive sets Mη with respect to the parameter
η. On account of these assumptions we show in [12, Theorem 3.12] the joint continuity at
zero (on X \M0) of the function φη of the smallest positive time to reach Mη (cf. (33)),
whereas in [12, Corollary 3.17] we prove the joint continuity with correction at η = 0 (on
X \M0) of the impulsive semigroups π̃η. Both results are fundamental for the proof of the
main theorem [12, Theorem 4.2] on the upper semicontinuity at η = 0 of the precompact
global attractors Aη for the family of impulsive dynamical systems {(X, πη,Mη, Iη)}η∈[0,1]

(see (35)). We apply this theorem to a simple planar system with a perturbation and with
given impulsive functions. The last part of the paper contains the theorem ([12, Theorem
6.3]) on the lower semicontinuity at η = 0 of the family of precompact global attractors
for a particular family of impulsive dynamical systems.

In the paper [13], written jointly with Pedro Maŕın-Rubio, we study the nonautono-
mous semilinear parabolic equation with dynamical boundary condition of the form

∂u
∂t
−∆u+ κu+ f1(u) = h1(t) in Ω× (s,∞),

∂u
∂t

+ ∂u
∂~n

+ f2(u) = h2(t) on ∂Ω× (s,∞),
u(x, s) = us(x) for x ∈ Ω,
u(x, s) = ϕs(x) for x ∈ ∂Ω,

(43)

where Ω is a bounded domain in RN , N ­ 2, with the Lipschitz boundary ∂Ω and κ > 0.
Our aim was to prove for (43) the existence of a pullback exponential attractor and to
obtain an estimate of the finite fractal dimension of the pullback global attractor, whose
existence in H = L2(Ω) × L2(∂Ω), under appropriate assumptions on the nonlinearity,
was earlier proved in the paper [A-M-R1] and its regularity investigated in the paper
[A-M-R2].

We assume that the functions f1, f2 ∈ C(R) are almost monotonic, i.e., the functions
fi(u) + lu are nondecreasing with some l > 0, satisfy the growth condition

|fi(u)− fi(v)| ¬ L |u− v|
(
1 + |u|pi−2 + |v|pi−2

)
, u, v ∈ R, i = 1, 2, (44)

and the dissipativity condition

fi(u)u ­ α |u|pi − β, u ∈ R, i = 1, 2, (45)

with some constants pi ­ 2, α,L > 0, β ­ 0, whereas ~h = (h1, h2) ∈ L2
loc(R;H).

In [13, Theorem 2.2] we show the existence of global weak solutions of (43) for initial
conditions (us, ϕs) ∈ L2(Ω) × L2(∂Ω) using the classical approach of J.-L. Lions ([LI]).
Next, applying the results of my paper [3], we prove in [13, Theorem 4.5] the existence of
a pullback exponential attractor for (43) in the space H provided that the nonautonomous
term ~h is translation bounded, i.e.,

sup
t∈R

∫ t+1

t

∣∣∣~h(τ)
∣∣∣2
H
dτ ¬ K,

and the nonlinearities fi, i = 1, 2, satisfy (44) and (45) with suitable exponents pi (see
[13, (4.5)]). If the boundary ∂Ω is sufficiently smooth and f1, f2 satisfy additionally

|f1(s)− f2(s)| ¬ C(1 + |s|), s ∈ R,
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then the requirements for the exponents p1 = p2 = p can be weakened (cf. [13, (4.15)]). In
particular, for N = 2 the nonlinearities fi(u) = u3− u, u ∈ R, as well as any polynomials
of odd degree with positive leading coefficient are allowed. This also shows that the regular
pullback global attractor studied in [A-M-R2] has a uniform bound of the fractal dimension
if the term ~h is translation bounded.

In the paper [13] we also consider the Lipschitz case (p1 = p2 = 2) and prove in [13,
Theorem 5.4] the existence of a pullback exponential attractor for (43) in H even if the
nonautonomous term grows exponentially in the past and in the future, i.e., if ~h satisfies∣∣∣~h(t)

∣∣∣2
H
¬ Keθ|t|, t ∈ R,

with some K > 0 and 0 ¬ θ < 2(λ1 +α), where λ1 > 0 is the first eigenvalue of the linear
operator A0 from the abstract Cauchy problem corresponding to the system (43).

6. Paper to be published

[I] Radosław Czaja, Waldyr M. Oliva, Carlos Rocha, On a definition of Morse-Smale
evolution processes, paper in review.

In the years 2009-2014 I stayed in the Instituto Superior Técnico in Lisbon and parti-
cipated in the research carried out there by Waldyr M. Oliva and Carlos Rocha. This rese-
arch concentrated around an appropriate generalization of the notion of the Morse-Smale
semigroup to the nonautonomous case. In particular, the definition of the Morse-Smale
process should imply the property of openness, i.e., a small nonautonomous perturba-
tion of an autonomous equation generating a Morse-Smale semigroup is a Morse-Smale
process. In the meantime appeared the paper [B-C-L], in which the authors formulate
a definition of the Morse-Smale process (cf. [B-C-L, Definition 2.18]) if the process comes
from a gradient system without (hyperbolic) periodic orbits and containing only hyperbo-
lic stationary solutions. We judged this as an oversimplification and we concentrated on
the study of nonautonomous perturbations of periodic orbits. We constructed an example
of an autonomous system of ordinary differential equations with a hyperbolic periodic
orbit for which small appropriate nonautonomous perturbations preserve the correspon-
ding isolated invariant cylinder though the dynamics on it changes diametrically. Using
the isolated invariant manifolds (cf. integral manifolds considered e.g. by J.K. Hale [HA3,
Theorem VII.7.1] and D. Henry [HE1, Theorem 9.1.1]) we showed their persistence under
the perturbation of hyperbolic periodic orbits. Later we formulated the definition of the
Morse-Smale process substituting the nonwandering points from the classical definition
by an appropriate recurrent behavior for the evolution process. This allowed to prove the
above-mentioned property of openness of Morse-Smale processes for semilinear parabolic
equations. These results have been included in the manuscript [I] and are currently under
review.
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