Attachment No 3 to the Application for Entering the Habilitation Procedure - sum-
mary of professional accomplishments

1. Name: Wlodzimierz Fechner.
2. Academic degrees:

1. Master of Mathematics: University of Silesia, Institute of Mathematics, June,
1st. 2003.
The title of Master Thesis: Functional Equations in Rdtz Space (in Polish),
Supervisor: Prof. dr hab. Roman Ger.

2. PhD in Mathematics: University of Silesia, Institute of Mathematics, July
2nd 2007.
The Title of Dissertation: Functional Inequalities Connected with Quadratic
Functionals (in Polish),
Supervisor: Prof. dr hab. Roman Ger.

3. Information about the employment in scientific institutions:
1. March 15, 2007 - June 30, 2007: research-and-teaching assistant (part-time
employment), University of Silesia, Institute of Mathematics.
2. October 1st, 2007 - now: assistant professor (full post), University of Silesia,

Institute of Mathematics.

4. The scientific achievement spoken of in a respective act of Polish law.

(a) The monographic set of publications entitled Functional Inequalities in sev-
eral variables.

(b) The list publications of the monographic set of publications:

[F1] Wtlodzimierz Fechner, Functional characterization of a sharpening of
the triangle inequality, Math. Inequal. Appl. 13/3 (2010), 571-578.

[F2] Wtlodzimierz Fechner, On some composite functional inequalities, Ae-
quationes Math. 79/3 (2010), 307-314.
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[F3] Wiodzimierz Fechner, Four inequalities of Volkmann type, J. Math.
Inequal. 5/4 (2011), 463-472.

[F4] Wiodzimierz Fechner, A note on alienation for functional inequalities,
J. Math. Anal. Appl. 385 (2012), 202-207.

[F'5] Wlodzimierz Fechner, Hlawka’s functional inequality, Aequationes Math.
(2012) doi=10.1007/s00010-012-0178-2.

[F6] Wlodzimierz Fechner, Inequalities connected with averaging operators,
Indagationes Math. 24 (2013), 305-312.

[F7] Wlodzimierz Fechner, Functional inequalities motivated by the Lazx-
Milgram theorem, J. Math. Anal. Appl. 402 (2013), 411-414.

(c) The description of the scientific goal of the foregoing papers and results ob-
tained, jointly with their potential applications:

The aim of the monographic set of publications is to examine some problems
of functional inequalities in several variables, its applications and connections
with other mathematical disciplines. Solutions of the posed problems are
contributions of the habilitation candidate to the development of the theory
of functional inequalities. Tools and the proof techniques applied are far
from standard methods used for solving similar problems and are additional
contributions of the habilitation candidate to the development of this theory.
Moreover, this set of publications reveals new connections between the theory
of functional inequalities and elements of operator theory and of multifunction
theory.

Introduction.

We begin with a short description of two most basic functional inequalities being a
building blocks in our research, namely the inequality defining Jensen convex functions
and the inequality defining subadditive functions. The latter one plays the crucial role
in our further research.

Assume that (X, +) is an Abelian semigroup with unique division by two, D C X is
a set such that %(m +y) € Dforall z,y € Dand f: D — R is an arbitrary function.
We say that f is Jensen convez, if
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Assume additionally that X is a real linear space and the set D is convex. A function
f: D — Ris convex, if

FOQz+(1—=Ny) <Af(2)+(1-N)f(y), z,yeD, Ae[o1]

Every continuous Jensen convex function defined on a convex subset of a real linear-
topological space is convex. Since there exist discontinuous linear functionals, there
exist also discontinuous convex functions. A discontinuous additive function on the real
line is an example of a Jensen convex function which is not convex. On the other hand,
slight regularity conditions upon a Jensen convex function imply its continuity. The
Bernstein-Doetsch theorem says that every Jensen convex function defined on an open
and convex subset of a real linear topological space which is bounded from above on
some non-empty open set is convex. On the other hand, Sierpiniski’s theorem states that
each Lebesgue measurable and Jensen convex function defined on an open and convex
subset of R™ is continuous. More details concerning these notions can be found in the
monograph of Marek Kuczma [12].

The situation is much more difficult in the case of the second functional inequality
we are interested in. Assume that (X, +) is an Abelian semigroup and f: X — R is an
arbitrary function. The function f is subadditive, if

fl@+y) < fl@)+ f(y), z,y€eX.

We need to mention that counterparts of Bernstein-Doetsch and Sierpinski theorems
are not valid for subadditive functions. In fact, there exist discontinuous subadditive
functions with a relative high regularity. A more detailed discussion for this class of
functions can be found e.g. in the monograph E. Hille, R.S. Philips [9].

An important class for us are sublinear functions. Let (X, +) be an Abelian semi-

group and let f: X — R be an arbitrary function. The function f is sublinear, if it is
subadditive and

f(2x) =2f(z), z€X.

In particular, each sublinear function is Jensen convex. Moreover, the following repre-
sentation of sublinear functions holds true.

Theorem 1 (R. Ger [6]). Assume that (X, +) is an Abelian group and f: X — R is
an even sublinear function. Then there exist a Banach space E and an additive mapping
A: X — E such that f has the following representation:

f@) =A@, =eX.



The Banach space E spoken of in the above theorem can be defined explicitly as a
space of bounded sequences on some set with the supremum norm.

In the set of papers [F1-F7| we concentrate on selected problems of the theory of
functional inequalities, where we develop new proof techniques. We begin with some
relatively elementary problems where we apply some tools known earlier. During our in-
vestigations more complicated problems occur and an application of classical methods is
no longer possible. Thus, in order to tackle them, we are forced to look for nonstandard
methods. The first method introduced by the author can be intuitively called “differ-
entiating” an inequality side-by-side or “subtracting” two inequalities side-by-side. This
approach allows the author to study new types of problems, so called composite func-
tional inequalities. The second tool was introduced in the paper [F7] and is is based on
applications of multifunctions and selection theorems for functional inequalities. More
details will be given in the last paragraph of the present summary.

Ré&dulescu’s theorem on a characterization of linear-multiplicative operators
and a result of Hammer. Alienation of functional inequalities.

Assume that X is a compact Hausdorff topological space and C (X) is the space of
all real continuous functions defined on X with the supremum norm. Marius Ridulescu
in the paper [16] showed that if an operator T: C(X) — C(X) satisfies the following
system of inequalities:

{T(f+g) > T(f)+T(g), (1)
T(f-9) = T(f) -T(g),

for all f,g € C(X), then there exist a closed-open set B C X and a continuous function
p: X — X such that

T(f)=xB-foo,

where x denotes the characteristic function of a set. In particular, the operator T is
linear, multiplicative and continuous.

Jean Dhombres in the paper [4] investigated the following system of equations:

{f(ery) = f(z)+ f(y), (2)
flzy) = f(2)f(y),

together with the single equations obtained by adding side-by-side equations in the
system (2), i.e. the equation:

fl@+y) + flzy) = flz) + fly) + f(z)f(v) (3)
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and also a more general equation:
af(zy) +bf (z)f(y) + cf(z +y) + d(f(z) + f(y)) = 0.

Assume that we are given an abstract system of functional equations or inequalities
(U) and, respectively, an equation or inequality (E) which is obtained by adding side-
by-side both relationships of (U). Of course, every solution of (U) satisfies (E). If the
converse implication is true, we say that the alienation effect holds for the system (U).

Dhombres in his paper has given conditions under which every solution of equation
(3) satisfies the system (2), thus the alienation effect holds for additive and multiplicative
Cauchy equations from the system (2). Now we come to the question if a similar
behaviour is characteristic for the system of inequalities (1). Intuitively, it would mean
that under certain assumption it is possible to “subtract side-by-side” both inequalities
of (1). The first result in this direction is due to Claus Hammer in [8]. He has shown
that a continuous and differentiable at zero function f: R — R satisfies the inequality

fle+y)+ flay) 2 flo) + fly) + f(@)f(y), z,yeR (4)
if and only if f is constant and equal to zero or
f(z) =a:+a—1(e‘”— 1), z€R,

a
where a = f/(0) > 1.

The aim of the paper [F4] is to continue and extend the investigations of the above
problem. We introduce the method, intuitively called by us “differentiating an inequality
side-by-side”. This is a modification of the method from the mentioned earlier paper of
Hammer [8] and will be also employed later in sections describing results from papers
[F2] and [F5]. A general idea is based on an inspection of suitable difference quotients
and showing by means of the investigated inequality that these quotients fulfil certain
estimates. In some cases it is possible to prove that every solution of the investigated
inequality has to be continuously differentiable (results of [F4] and [F5]), but in other
cases we have to assume a higher regularity of an unknown function (results of [F2]).
Further, passing to the limit we usually obtain some (ordinary) differential equation
or an inequality and after solving it we derive the general form of solutions of the
original problem. In the paper [F4] (published in 2012 but submitted for publication in
September 2009) we managed to apply this method in an elementary form. Problems
discussed in (written later) papers [F2] and [F5] have been much more difficult, also
technically and required significant modifications of our original approach.

The first lemma deals with a general situation with two unknown functions.
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Lemma 1 ([F4, Lemma 1|). Assume that functions f: R — R and g: R — R are
differentiable at zero, g is continuous and «, 5 € R are arbitrary constants. If f and g
with f(0) = g(0) = 0 satisfy the following functional inequality

alf(x+y) — f(x) — f(y)] + Blg(zy) — g(x)g9(y)] > 0, =,y €R, (5)

then the equality

a(f'(z) = £1(0)) = Bg'(0)(9(z) —z), =z€R.
holds. If additionally ov # 0 then f is continuously differentiable.
Observe that this lemma is a generalization of a well-known fact that a subadditive

function f: R — R, which is differentiable at zero and f(0) = 0 is of the form f(z) =
f'(0)z for all z € R (it is enough to put g = 0 and @ = —1 in the lemma).

Note that Lemma 1 allows us to reduce the problem of solving the functional in-
equality (5) with two unknown functions to the case with only one unknown function.

Next, we obtain a generalization of the above-mentioned result of Hammer.

Theorem 2 ([F4, Theorem 1]). Assume that a function f: R — R is differentiable
at zero and continuous with f(0) = 0 and that b,c € R are nonzero constants. Then f
satisfies the inequality

fle+y) +of(zy) = flz) + fy) + cf()f(y), z,y€R (6)
if and only if either f =0 or

_ac~b

b
acz _ 1 =
ac? L ]+c

f(z)

where a = f'(0) with ac > 0 and (ac — b)be > 0.

z, zT€R,

As a corollary we derive that the alienation effect for the investigated system of
inequalities holds if and only if either f =0 or f/(0) = g (|F4, Corollary 1]).

Cases ¢ = 0 or b = 0 in the inequality (6) are discussed in the two next theorems.

Theorem 3 ([F4, Theorem 2|). Assume that a function f: R — R is differentiable
at zero and continuous with f(0) =0 and b € R is an arbitrary constant. The function
f satisfies the inequality

flx+y)+bf(zy) > f(x) + f(y), z,yeR
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iof and only if ;
Flx) = —-2—abx2 +azr z€eR,

with a = f'(0). Moreover, if additionally b # 0, then a < 0.

Theorem 4 ([F4, Theorem 3|). Assume that a function f: R — R is differentiable
at zero and continuous with f(0) = 0 and ¢ € R is an arbitrary nonzero constant. A
function f satisfies the inequality

fl@+y) 2 f@)+ fy) +cf(2)f(y), z,yeR
if and only if
fa)=—fe" -1, seR,
with a = f'(0).

Tarski’s identity and some strengthening of the triangle condition.

The following elementary identity was observed by Alfred Tarski (see [18]):
[zl =1yl = lz +yl + |z -yl — =] - |y, =z,yeR. (7)
Lech Maligranda in [14] shown that (7) is not satisfied in dimensions grater than one.
However, in an arbitrary normed linear space the following estimate:

[zl =Nyl | < lle +yll + lle =yl = llzll = llyll < min{flz +y, llz - y)}. (@)

holds. Without using any (!) other properties of the norm we can easily derive from (8)
both triangle inequalities: ||z + y|| < ||lz|| + [ly|| and | ||z]| — Jy]|| < ||z — y||. Inequality
(8), treated as a strengthening of the triangle inequality, is, together with some related
relations, a motivation for research published in the papers [F1], [F2] and [F3]. We
deal with functional inequalities which, according to its motivations, can be viewed as
strengthenings of the subadditivity condition.

The first problem investigated which is connected with the Tarski identity (7) and
inequality (8) shown by Maligranda is the functional equation

[f(@) = FW)l = flz +y) + f(z —y) — f(z) — fy) (9)
and the inequality

(@) = FW) < fle+y) + fle—y) — f@) = fy) <min{f(z +y), flz—y)}. (10)

In the paper [F1] we have proved the following theorems.

i
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Theorem 5 ([F1, Theorem 1]). Assume that (X, +) is an Abelian group and f: X —
R is a function vanishing at zero. Then f satisfies (10) if and only if there exist a normed
linear space (E,|| -||) and an additive mapping A: X — E such that

f(@) =A@, = e€X.

Theorem 6 ([F1, Theorem 2|). Assume that (X, +) is an Abelian group and f: X —
R is an arbitrary function. Then f satisfies (9) if and only if there exist an additive
mapping A: X — R and a constant ¢ € R such that

flx) =|A(z)|+¢, z€X.

We proved also the Hyers-Ulam stability of (9) ([F1, Theorem 3 and Corollary 4]).
In the proof of Theorem 5 we have used Theorem 1 of Ger. On the other hand, Theorem
6 is an easy consequence of Theorem 5.

Peter Volkmann in a personal discussion with the author observed that Theorem 6
can be derived from the results of Chaljub-Simon and Volkmann from the paper [3].
They have investigated the following functional equations

max{f(z +y), f(xr —y)} = f(z) + f(y),
min{f(z +v), f(z —y)} = |f(z) — f(v)], (12)

for an unknown function f: R — R.

In view of the above results for function satisfying (10) and its connections with (11)
and (12) a natural question arises about the solutions of functional inequalities coming
directly from equations (11) and (12):

max{f(z +y), f(z —y)} < f(z) + f(y), (13)
max{f(z +y), f(z —y)} > f(z) + f(y), (14)
min{f(z +y), f(x —y)} > |f(z) — f(v)], (15)
min{f(z +y), f(x — )} < |f(z) — f(¥)|- (16)

The above inequalities for functions defined on an Abelian group, called Volkmann-
type Inequalities, are investigated in the paper [F3]. We observed that there is no
symmetry between the respective pairs of inequalities: (13) and (14) and between (15)
and (16). Moreover, we proved that every solution of (13) vanishing at zero is an even
subadditive function. Additionally, if a solution of this inequality vanishes at some point,
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then it vanishes at zero. Moreover, the set of zeros of this function forms an additive
subgroup of the domain. An analogical behaviour is characteristic for the inequality
(15). The difference is connected with the set of zeros: each point from the set of
zeros of solutions (15) is a period of f. For inequalities (14) and (16) we provide some
examples which show how weak they are in comparison to the converse inequalities.

The technique of “differentiating inequalities side-by-side”, already introduced in the
previous part, has been applied in the paper [F2| for the following three functional
inequalities, which are motivated by (7) and (8):

f(f(@)—fW) < fla+y)+ f(fz—y) - fl=)— fly), =y€eR, (17)
f(f(@) = f) < f(flz+y) + flz—y) - flx) - fly), =z,yeR, (18)
f(f(@) = fW) < f(flx+y) + f(flz—y) - f(fx)— fly), z,yeR. (19

Observe that in the above problems the unknown function f appears also as an argu-
ment of f. Therefore, inequalities (17), (18) and (19) are so-called composite functional
inequalities. Tt is worth to underline that the papers [F2] and [F6] are innovative in

investigations of inequalities of this type. Classical methods are of no use in the case of
composite functional inequalities.

For inequalities (17), (18) and (19) we have proved that if f is continuously dif-
ferentiable with f(0) = 0 and some estimate for the value f’(0) holds true, then every
solution is of one of the following forms: f(z) =z or f(z) = f/(0)z for x € R. Inequality
(17) is a bit more difficult compared to (18) and (19) and in order to solve it we needed
slightly stronger assumptions.

Hlawka’s inequality. Application of Dini derivatives and Denjoy-Young-Saks
theorem.

The inequality presented next, which can be also treated as a strengthening of the
triangle condition, is Hlawka’s inequality:

lz+yll +lly + 2l + |z + 2l < llz+y + 2l + || + [ly]] + ||| (20)

Edmund Hlawka observed it for complex numbers, which was noted in the paper [10] of
Hans Hornich in 1942. One can check that inequality (20) is not valid in every normed
linear space. Any normed-linear space for which (20) holds true for all points xz,v, z is
called a Hlawka space. The problem of characterization of Hlawka spaces remains open,
some partial results are recalled in the introduction of the article [F5].
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In the paper [F5] we focus on the functional inequality stemming from (20):

fe+y)+fly+2)+fl@+2) < fle+y+2)+ f(@)+ fly) + f(2). (21)

This inequality is investigated for real mappings defined on an Abelian group X and then
for real-to-real functions. Observe that the particular solutions of (21) are functions:
f =1 defined on a Hlawka space and f = || - ||? defined on a Hilbert space. More
generally, for any additive functional a: X — R defined on a group X and for any
additive operator L: X — Y with values in a Hlawka or a Hilbert space, respectively,
the mappings:

Xz f(x) =||Lz| +a(z) €R (22)

and
X3z f(z)=|Lz]® +a(z) €R (23)

satisfy (21). We prove that if a function f satisfies (21) and vanishes at zero then its
odd part is additive ([F5, Lemma 1]). Next, assuming one of the following homogeneity
conditions:

fQ2z) = 2f(x),
fQ2z) = 3f(z) + f(~=),
f(2z) = 4f(2),

for all z € X we have proved that every solution of (21) is of the form (22), (23) or (23)
with a = 0, respectively ([F5, Section 2]).

The problem of solving inequality (21) is much more difficult if we do not assume a
homogeneity condition. However, we have obtained some satisfying results also in this
situation. We restricted ourselves to real-to-real functions and we used the method of
“differentiating inequalities side-by-side”. Having in mind that we want to keep a high
generality of our considerations, in particular we should avoid assuming high regularity
of the function f, we decided to employ the Dini derivatives of f. In subsequent lemmas
presented in the third paragraph of the paper [F4] we derive properties of upper and
lower derivatives D* f and D. f. Next, we show that functions D, f(x)+ D" f(—z) and
D_f(z) + D™ f(—z) of a real variable z are bounded from both sides by expressions
which depend only on values of the Dini derivatives of f at zero. Next, we prove
subadditivity of the mappings —D, f + D*f(0): R — R and D~ f — D_f(0):R - R
with possibly infinite values (we use the notation R = R U {—oc,+00}). Then, we
apply the Rosenbaum lemma (see R.A. Rosenbaum [17] or E. Hille, R.S. Philips 9,
Theorem 7.3.3]) for subadditive functions taking values in R. This useful lemma says
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that if a subadditive function ¢: R — R is Lebesgue measurable and o(ty) < +oo
at some negative point ty, then either ¢ = +oc almost everywhere on (0, +00), or
© is finite (everywhere) on R. Informations obtained thanks to the Rosenbaum lemma
are compared with the assertion of the Denjoy-Young-Saks theorem, which describes the
possible behaviour of Dini derivatives for any real-to-real function. Thus we have proved
that under quite weak assumptions the function f is differentiable almost everywhere
and at least one of its Dini derivatives is finite at every point. The next step of the
proof is to use a result of Zbigniew Gajda [5, Corollary 3.1] about the stability of the
Cauchy functional equation almost everywhere. If we denote B = 3[D* f(0) + D_f(0)],
C = 3[D*f(0) — D_f(0)] and define the function g by g(t) = f'(t) — B, then g is a
well-defined function for almost all ¢ € R and the stability estimate

l9(z +y) —g(z) —g)| < C

holds true for almost all pairs (z,y) € R?. Using Gajda’s results we infer that the (exist-
ing almost everywhere) derivative of f has a uniform approximation almost everywhere:

|f'(z) —2Az— B| < C

for some constant A. A description of f is obtained by taking the integrals of both sides
of the above estimate. Using the fact that since at least one of the Dini derivatives of
f is finite everywhere, we can calculate its Henstock integral. But f is differentiable
almost everywhere and the Henstock integral of f’ coincides with its Lebesgue integral.

In this way we obtained the following theorem which is the main result of the paper
[F'5].

Theorem 7 ([F5, Theorem 8|). Assume that a function f: R — R is measurable
with f(0) =0, all its Dini derivatives are finite at zero and at least one of them is finite
at some positive point and at some negative point and at least one of these derivatives
is finite at a set of positive Lebesgue measure. If f satisfies (21) for all z,y,z € R, then
there exist a constant A € R and a mapping r: R — R such that

f(z) = Az* + Bz +r(z)
and
r(z)| < Clz|
for all z € R, where B = 3[D* f(0) + D_f(0)] and C = 1[D* f(0) — D_ f(0)].
If in the above theorem we assume additionally that DT f(0) < D_ f(0), then we get

that f satisfies inequality (21) if and only if there exist constants A, B € R such that
f(z) = Az? + Bz for all z € R ([F5, Corollary 5]).

11
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It is worth to mention that the results of the paper [F5] have already achieved a
considerable interest among the international specialist working in the field of functional
equations and inequalities. During the conference /9th International Symposium on
Functional Equations in Graz-Mariatrost (Austria), where the author presented results
concerning inequality (21), Zsolt Pales [15] posed several problems motivated by the talk
of the habilitation candidate. Moreover, the results of the paper [F5] were presented
with detailed proofs by the habilitation candidate in the Seminar of the Chair of Analysis
at the University of Debrecen (Hungary) during his scientific visit in June 2012.

Averaging operators and related functional inequalities.

One of the earliest problems investigated connected with the composite functional
equations is the averaging operators equation:

T(f-Tg)=Tf Ty. (24)

First it appeared in the thirties of the 20th century in works of Joseph Kampé de
Fériet [11]. Later it was studied by Garrett Birkhoff [2] and by other mathematicians,
also with multiplication replaced by an arbitrary group or semigroup operation. A linear
operator T': A — A acting on an algebra A is called averaging operator, if it satisfies
equation (24) for all functions f, g. The topic of the averaging operators was investigated
intensively in the sixties and seventies of the last century. Presently, a few papers on
related topics are also being published.

The aim of the paper [F6] is to study a modification of the above-mentioned problem
with the equality sign in (24) replaced by an inequality sign. It is obvious that our
considerations should be restricted to ordered structures, for example to the algebra
C(X) of all real functions on some compact set or, more generally, to ordered rings.
In the context of earlier studies of (24) it is justified to focus on the following two
inequalities:

T(f+T(9) >T(f)+T(g), (25)
T(f-T(g)) > T(f) T(g). (26)

Let us point out that we do not assume linearity of the operator T in the above
problems. As a consequence we obtain a limited description of the solutions. An addi-
tional difficulty, which was pointed out when investigating problems (17), (18) and (19),
is the character of inequalities (25) and (26) - we deal with the functional inequalities of
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composite type. Thus we do not have any selection of methods which allow us to find
their solution in an effective way.

The paper [F'6] begins with a sequence of examples of mappings satisfying inequality
(25) or (26), which show that solutions can be far from the form one could expect if the
range of an unknown function 7" is not at least an additive group or it is not a set of
non-empty interior. Next, it is shown that if R is a partially ordered ring, then every
solution T: R — R of (25) is of the form

T(f) = f+1T(0) (27)

for all elements f from the set T(R) N —T(R) ([F6, Lemma 2.1]). In particular, we
know that all surjective solutions are of the form (27) for all f € R ([F6, Corollary
2.1]). Further, it is proven that if the ring R is furnished with an additional topological
structure, then solutions are also of this form under substantially weaker assumptions
than surjectivity ([F6, Corollary 2.2]).

Since the ring R can contain zero divisors, inequality (26) is much more difficult to
deal with. It is shown that if R is a unitary ring with 1 > 0, then for all f from some
subset of R the equality T'(f) = T(1) - f holds ([F6, Lemma 2.3 and Theorem 2.1]).

Lax-Milgram lemma. An application of multifunctions and a selection theo-
rem.

The last paper of the monographic set of publications deals with a modification of
the Lax-Milgram lemma. The result proven has a weaker assertion, but it is obtained
without the coercivity assumption. Moreover the bilinearity condition is replaced by a
system of inequalities. The classical result of Peter Lax and Arthur Milgram published
in [13] is usually formed in the following way:

Theorem 8 (P. Lax, A. Milgram [13]). Assume that H is a real Hilbert space with
the inner product (-|-), B: H x H — R is a bilinear functional which is bounded and
satisfies the coercivity condition :

cllull* < B(u,u) (28)

for some constant ¢ > 0 and for all w € H. Then every continuous linear functional on
H 15 of the form B(-,w) for some uniquely determined vector w € H.

Equivalently, using the Riesz Representation theorem one can reformulate the asser-
tion of the Lax-Milgram lemma in the following way:
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Functional B can be represented as
B(u,v) = (Tu,v), wu,v€ H,
where T': H — H is a continuous and bijective linear operator.
The main result of [F7] is the following theorem.

Theorem 9 ([F7, Theorem 5]). Assume that H is a real Hilbert space and B: H x
H — R is a mapping which satisfies the following conditions:

(a) for every u € H the map B(u,-) is sublinear;

(b) for every v € H the map B(-,v) is superadditive;
(c1) if B(u,v) > 0 for some u € H and for each v € H, then u = 0;
(¢2) if B(u,v) =0 for each w € H and for some v € H, then v = 0;

(d) B is bounded from above on some non-empty open subset of H x H.
Then, there exists a bounded linear operator T: H — H such that:

(1) T is injective;

(i) the image of T is dense in H;

(4i) (Tu|v) < B(u,v) for all u,v € H.

In the proof of Theorem 9 we use a result of Ger from the paper [7], which says that
every continuous sublinear function defined on H has the following representation:

f(z) =sup{(a|z) :a € K}, z€H,

where K is a non-empty weakly compact and convex set. Moreover, the set K is
determined uniquely as

K={zecH: (z|v) < f(v) for allve H}.

Using these two facts we construct some multifunction m: H — cc(H ). Next, we show
the relation
m(u) +m(v) € m(u + v)
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for every u,v € H. Further, using the selection theorem for superadditive multifunctions
due to Gajda [5, Theorem 4.4] we obtain an additive selection of the multifunction m.
Concluding the proof we show that this selection (which is equal to the postulated
operator T') satisfies conditions (i), (i7), (i) of Theorem 9.

It is worth to emphasize that the very desirable property of multifunctions that its
values are non-empty, compact and convex sets is in our case a consequence of a suitable
functional inequality. Therefore, we believe the same effect is true also for a broader class
of problems. If this is the case, then selection theorems could be applied in numerous
problems in the theory of functional inequalities.

An undoubted drawback of the results of this section is the lack of presently known
applications. The basic problem which precludes us from applying Theorem 9 in an
analogical way as the Lax-Milgram lemma is connected with too weak properties of the
operator 1" provided in Theorem 9. Namely, we have not proved the bijectivity of T.
The problem seems to lie in the fact that in our case the coercivity assumption (28)
does not provide the same effects if the bilinearity assumption is replaced by a system of
inequalities. In standard proofs of the Lax-Milgram theorem the condition (28) forces
the bijectivity of T'. In our problem an analogous implication is not true. At this moment
the author does not know any condition which together with the other assumptions of
Theorem (9) would imply the assertion similar to the Lax-Milgram lemma.

The results of this paragraph were presented in February 2012 by the author on the
seminar Ulmer Seminare "Funktionalanalysis und Differentialgleichungen” presided over
by Wolfgang Arendt, where the talk received a considerable interest. During the discus-
sion after the talk Markus Kunze pointed out some connections of the presented results
with the Bellman equation and with similar problems investigated e.g. in optimiza-
tion theory (cf. also a survey [1]). Moreover, in June 2012 the habilitation candidate
presented the same result on the conference The Fiftieth International Symposium on
Functional Equations in Hajdtszoboszl6 (Hungary). The talk was awarded the medal
For Outstanding Contribution granted by the Scientific Committee of the conference.

The habilitation candidate plans to conduct further research on this topic, also using
other selection theorems, as for example Michael’s theorem which gives conditions under
which a lower semicontinuous multifunction has a continuous selection.
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5. A summary of the remaining scientific achievements.

(a) List of other (not included in the scientific achievement spoken of in point 5)
published scientific papers.

(A) Scientific papers in journals indexed in the database Journal Citation Reports
(Edition 2011):

[F8] Wtodzimierz Fechner, On functions with the Cauchy difference bounded
by a functional. Part III, Abh. Math. Sem. Univ. Hamburg 76 (2006),
57-62.

[F9] Wtodzimierz Fechner, Stability of a functional inequality associated with
the Jordan-von Neumann functional equation, Aequationes Math. 71
(2006), 149-161.

[F10] Wtodzimierz Fechner, On the Hyers-Ulam stability of functional equa-
tions connected with additive and quadratic mappings, J. Math. Anal.
Appl. 322 (2006), 774-786.

[F11] Wtodzimierz Fechner, Characterization of quadratic mappings through
a functional inequality, J. Math. Anal. Appl. 324 (2006), 452-459.

[F12] Wlodzimierz Fechner, On a functional inequality connected with quadratic
Junctionals, J. Math. Anal. Appl. 332 (2007), 381-389.

[F13] Wiodzimierz Fechner, On an abstract version of a functional inequality,
Math. Inequal. Appl. 11/2 (2008), 381-392.
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[F14] Wtodzimierz Fechner, On a composite functional equation on Abelian
groups, Aequationes Math. 78 (2009), 185-193.

[F15] Wtodzimierz Fechner, On some functional inequalities related to the
logarithmic mean, Acta Math. Hungar. 128/1-2 (2010), 36-45.

[F16] Wlodzimierz Fechner, Stability of a composite functional equation re-
lated to idempotent mappings, J. Approx. Theory 163 (2011), 328-335.

|[F17] Wtodzimierz Fechner, Functional equations with exotic addition, Non-
linear Anal. 74/17 (2011), 5999-6003.

[F18] Wtodzimierz Fechner, A characterization of quadratic-multiplicative
mappings, Monatsh. Math. 164/4 (2011), 383-392.

[F19] Wlodzimierz Fechner, Eszter Gselmann, General and alien solutions
of a functional equation and of a functional inequality, Publ. Math.
Debrecen 80/1-2 (2012), 143-154 (the exact contribution is described
in the co-author acknowledgement).

[F20] Wlodzimierz Fechner, Justyna Sikorska, On a separation for the Cauchy
equation on spheres, Nonlinear Anal. 75 (2012), 6306—6311 (the exact
contribution is described in the co-author acknowledgement).

[F21] Wtlodzimierz Fechner, On a composite functional equation satisfied al-
most everywhere, Indagationes Math. 24 /1 (2013), 103—110.

[F22] Wlodzimierz Fechner, Quadratic operators on AM-spaces, Glasnik Mat.
(accepted).

(B) Scientific papers in journals other than indexed in the database Journal Ci-
tation Reports (Edition 2011).

[F23] Wlodzimierz Fechner, On functions with the Cauchy difference bounded
by a functional, Bull. Polish Acad. Sci. Math. 52/3 (2004), 265-271.

|[F24] Wtodzimierz Fechner, On functions with the Cauchy difference bounded
by a functional. Part II, Int. J. Math. Sci. 2005/12 (2005), 1889-1898.

[F25] Wtodzimierz Fechner, Separation theorems for conditional functional
equations, Ann. Math. Sil. 21 (2007), 31-40.

[F'26] Wtodzimierz Fechner, Some inequalities connected with the exponential
function, Arch. Math. (Brno) 44 (2008), 217-222.

[F27] Wlodzimierz Fechner, Justyna Sikorska, Sandwich theorems for orthog-
onally additive functions, C. Bandle et al. (eds.), Inequalities and Appli-
cations 2007, International Series of Numerical Mathematics, 157 (2009),
269-281 (the exact contribution is described in the co-author acknowl-
edgement).
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|[F28] Wtodzimierz Fechner, Justyna Sikorska, On the stability of orthogonal
additivity, Bull. Polish Acad. Sci. Math. 58 (2010), 23-30 (the exact
contribution is described in the co-author acknowledgement).

[F29] Wtodzimierz Fechner, Roman Ger, Some stability results for equations
and wnequalities connected with the erponential functions, J.M. Rassias
(edt.), Functional Equations and Difference Inequalities and Ulam Sta-
bility Notions (F.U.N.), Mathematics Research Developments, Nova Sci-
ence Publishers, Inc., New York 2010, pp. 37-46 (the exact contribution
is described in the co-author acknowledgement).

[F30] Wlodzimierz Fechner, Functional equations motivated by the Lagrange’s
identity, Demonstratio Math. 44/1 (2011), 91-98.

[F'31] Wlodzimierz Fechner, On some functional-differential inequalities re-
lated to the exponential mapping, Tokyo J. Math. 34/2 (2011), 345-352.

[F'32] Wiodzimierz Fechner, Functional inequalities and equivalences of some
estimates, C. Bandle et al. (eds.), Inequalities and Applications 2010,
dedicated to the Memory of Wolfgang Walter. International Series of
Numerical Mathematics 161 (2012), 231-240.

(b) A description of the scientific output of the habilitation candidate obtained after
the doctoral degree and which is not included in the monographic set of publica-
tions:

Other scientific output of the habilitation candidate concerns broadly understood
theory of functional equations and inequalities jointly with its connections with other
branches of mathematics. One can separate a few groups. Papers [F9], [F10], [F13],
[F16], [F28], [F29] deal with the Hyers-Ulam stability of functional equations and in-
equalities. These problems are currently intensively investigated by a number of math-
ematicians and are connected with other areas of mathematics. Let us emphasize that
the paper [F9], which is devoted to the stability of the following functional inequality:

12f(z) +2f(y) = flz =yl < If(= +y)ll,

is the most frequently cited paper of the habilitation candidate and presently has 50
citations (without self-citations) according to Google Scholar database.

The papers [F15], [F26], [F32] are devoted to the topic of comparisons of means
and related functional inequalities. Let the letters A, G and L denote the arithmetic,

19



geometric and logarithmic mean, respectively. The following estimates are well known:
G(s,t) < L(s,t) < A(s, t), (29)

and

Wl

Gi(s,2) - A3 (s,8) < L(s, t) < gG(s,t) + %A(s,t) (30)

for all s, > 0.
Let us fix arbitrary z,y € R such that z # y and substitute s := e* and ¢ := ¢¥

in (29) and (30). Therefore, we see that the exponential function satisfies the following
inequalities:
By e - e” +g¥

ez < e = (31)
and )
N T 1 oY]3 Y_ o .
Bas T2t {e ;6 } < 66 ¢ < 4o + e* + €Y. (32)
y—

Both foregoing estimates are motivation for the studies of the habilitation candidate
published in the above mentioned papers of the following four functional inequalities:

f <:H2~y> < f(y;:i:(w)

)

fly) = fl=) _ fl@)+ fly)
y— 2 ’

IN

f(x;gf‘ﬂ@;f@>§{ﬂ@:£@qi

@) 1) _ (2t
oL < ap (Z22) 4 40) + 500,

for z,y belonging to an interval I. Under some assumptions solutions of above inequal-
ities are of the form

f(xz) =m(z) - exp(z), z€l,

where m: I — R is a monotone mapping.

In the articles [F20], [F25], [F27] problems of separation by a function and sandwich
theorems for conditional functional equations are studied. Assume that X is a non-
empty set and we are given some binary relation R on X. Further, let p: X — R and
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q: X — R be two functions such that

R(z,y) = p(z +y) < p(z) + p(y),
R(z,y) = q(z +y) > q(z) + q(y).

By the term sandwich theorem we mean a statement which provide conditions sufficient
for the existence of a function f: X — R which solve the functional equation

Rz, y) = flz+y) = f(z)+ f(y)

andp< f<qorg< f<p.

In the joint paper with Justyna Sikorska [F27] we obtained sandwich theorems for the
orthogonal additivity, i.e. we dealt with the case when R is the orthogonality relation
on an inner product space or on a more general structure. Therefore, we proved that
orthogonally subadditive and orthogonally superadditive mapping can be separated by
an orthogonally additive function.

In the papers [F20] and [F27] we considered the situation when X is a normed
linear space and R(z,y) holds when ||z|| = |ly||. Also, more general settings have been
discussed. We provided conditions under which mappings which are subadditive or
superadditive, respectively, on vectors of equal length can be separated by an additive
function.

The paper [F14] is devoted to the following composite functional equation:

Ff@) = f) =fle+y)+ flz—y) - f(=) - fv),

for an unknown mapping f: G — G acting on an Abelian group (G,+). Results of this
paper also motivated in part our subsequent studies published in the articles [F2] and
[F16].

In the paper [F17] the habilitation candidate dealt with binary operations of the
form:

@y :=zf(y) +yf(x)

on an arbitrary interval containing zero. Moreover, Jensen functional equation and
equation of derivations with the ordinary addition replaced by the operation @ have
been solved.

The paper [F18] is devoted to the alienation problem for quadratic and multiplicative
mappings. Conditions are provided under which solutions of the following equation:

af (zy) + bf (@) f(y) +cf(z+y) + df (z — y) + k(f(z) + f(y)) =0
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are quadratic-multiplicative mappings. This result is also connected with the paper |F4]
of the monographic set of publications.

The purpose of the paper [F19] written jointly with Eszter Gselmann was to solve
the equation

9@ +y) —g9(x) - gly) = zf(y) +yf(z).

After determining the general solutions, we considered the alienation problem, i.e. we
examined the cases when the above equation implies that

9z +y) =g(z) + g(y)

and
zf(y) +yf(z) =0.

Finally, we discussed a related functional inequality:
9z +y) — g(z) — 9(y) = 2f(y) +yf ().

The paper [F30] is devoted to the following two functional equations:

f (Z aibi) == (Z f(ai>> (Z f(bi)> = Z f(aibj _ajbi)

and
F <Z aibi) = <Z f(%‘)) <Z f(bi)> = %Z Z flaib; — a;b;).

Both equations are motivated by the Lagrange identity, which states that for every

positive integer n and each a;, b; from a commutative ring R, where i = 1,...,n we have
n 2 n n
(o) = (24) () - S taty-anr
i=1 i=1 i=1 1<i<j<n

or equivalently
n 2 n n n n
<Z aibi) = (Z af) (Z b12> = %Z Z(a,—bj - ajbi>2'
i=1 i=1 i=1 i=1 j=1

In the paper [F'31] the habilitation candidate considered real-valued twice differ-
entiable functions defined on an open interval. The main result of this paper states
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that if a function f is a solution of some functional-differential inequalities then a map

z — f(x)exp(—cz) is convex, where ¢ is an arbitrary point of R\ (¢y, ¢5) for some real
C1,Co.

The last group is the paper [F22] jointly with some manuscripts of the habilitation
candidate which are in preparation or under review and concerns some problems of the
operator theory. In particular the habilitation candidate obtained some analogues of
representation theorems of linear operators on AM-spaces for quadratic operators. What
is more, generalizations of factorization theorems of Arendt have been proven (extensions
of the Luxemburg-Schep theorem and its dual theorem, which are operator versions
of the Radon-Nikodym theorem). It is planned that this studies will be continued
Jointly with Tomasz Kochanek within a framework of the project Linear and nonlinear
factorizations of operators, together with their stability properties in C*-algebras and in
lattices, which is accepted for being supported by by the Polish Ministry of Science and
Higher Education in a framework of the program Iuventus Plus 2012.
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