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Abstract. In this paper we consider a definition of Morse-Smale evolution
process that extends the notion of Morse-Smale dynamical system to the nonau-

tonomous framework. In particular we consider nonautonomous perturbations

of autonomous systems. In this case our definition of Morse-Smale evolution
process holds for perturbations of Morse-Smale autonomous systems with or

without periodic orbits. We establish that small nonautonomous perturbations

of autonomous Morse-Smale evolution processes derived from certain nonau-
tonomous differential equations are Morse-Smale evolution processes. We ap-

ply our results to examples of scalar parabolic semilinear differential equations

generating evolution processes and possessing periodic orbits.

1. Introduction. In recent years there is an increasing interest in the study of
nonautonomous evolution equations expressed either by ordinary or partial differ-
ential equations. In the mathematical literature the main object of these studies
is the long time behavior of the solutions of these systems, see [11, 2, 30, 8]. The
appropriate notions of attractor in the nonautonomous framework have been con-
sidered, and the study of their continuity and structural stability properties is still
going on. Here the study of nonautonomous perturbations of autonomous systems
is of particular relevance. Bortolan, Carvalho and Langa addressed these questions
in [4]. They introduce a notion of Morse-Smale evolution process which is suitable
for dynamically gradient evolution processes. This approach, reminiscent of Con-
ley’s treatment of isolated invariant sets, [15], is quite appropriate for gradient-like
flows. However, if the unperturbed autonomous system contains periodic orbits
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this approach is not adequate unless we consider the collapse of the corresponding
invariant sets. Since the classical notion of Morse-Smale dynamical system (in the
autonomous framework) also involves the case of (finitely many hyperbolic) periodic
orbits, it is appropriate to consider nonautonomous perturbations of autonomous
systems possessing periodic orbits. In this paper we consider a definition of Morse-
Smale evolution process that extends the notion of Morse-Smale dynamical system
to the nonautonomous framework.

A Morse-Smale dynamical system φ0 : R× B 7→ B has a finite number of hyper-
bolic equilibria and also a finite number of hyperbolic periodic orbits. Let S0(·, ·) de-
note the corresponding autonomous evolution process in B and consider the nonau-
tonomous evolution processes Sε(·, ·) corresponding to its (nonautonomous) pertur-
bations. Under a small ε-perturbation the solutions corresponding to the hyperbolic
equilibria of φ0 become hyperbolic solutions of the nonautonomous evolution process
Sε(·, ·), [5]. But to understand the nonautonomous perturbations of a hyperbolic
periodic orbit we need to consider the corresponding (normally hyperbolic) isolated
invariant manifolds. This is illustrated in Section 2 by a simple example of an or-
dinary differential equation on B = R2. We consider nonautonomous perturbations
of an autonomous ODE with one hyperbolic periodic orbit and describe the per-
turbations of the isolated invariant cylinder in R×B corresponding to the periodic
solutions of the unperturbed system. In particular, we illustrate the existence of two
special types of perturbations (normal and tangential) for these invariant cylinders.

In Section 3 we recall the notions of semiflows, global orbits, invariant sets and
global attractors. We also recall the extension of these notions to the nonau-
tonomous setting and we use the induced semiflows on R × B to compare the
evolution processes.

The central notion of pullback attractor and its continuity properties is consid-
ered in Section 5.

In Section 6 we recall the notions of exponential dichotomy and trichotomy as-
sociated to hyperbolic and partially hyperbolic solutions of evolution process. We
consider evolution process admitting a pullback attractor and satisfying well-known
reversibility properties. We also recall the notions of stable and unstable manifolds
and consider the normally hyperbolic isolated invariant manifolds associated to
(perturbations of) hyperbolic periodic orbits.

In Section 7 we recall and collect the classic results on the behavior of hyper-
bolic and normally hyperbolic isolated invariant manifolds under perturbation. The
study of conditions which ensure that such invariant manifolds are preserved under
perturbations are abundant in the literature. See for example Sacker [36], Fenichel
[18] and Hirsch, Pugh and Shub [27]. Quoting Pliss and Sell, [35]: “The fact that a
normally hyperbolic invariant manifold persists under a small C1-perturbation is, of
course, well known”. Here we collect some results on the behavior of certain isolated
invariant manifolds for differential equations under nonautonomous perturbations.
We essentially recall the classic results on integral manifolds for perturbed differen-
tial systems (the Krylov-Bogoliubov method) following Bogoliubov and Mitropolski
[3], Hale [20, 21, 22], Coppel and Palmer [16], and Henry [25].

The definition of Morse-Smale systems on B involves the concept of nonwander-
ing behavior for hyperbolic critical orbits. For the case of processes, we instead
introduce in Section 8 the notion of recurrent behavior on R× B neighborhoods of
graphs of global solutions z(·) (simply referred to as recurrent trajectories). We also
introduce the notion of recurrent behavior outside a manifold Mz. This notion is
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motivated by the behavior of normally hyperbolic invariant manifolds corresponding
to periodic orbits under normal/tangential perturbations as considered in Section
2.

Using the notion of recurrent behavior we define Morse-Smale evolution process
in Section 9. Then we show in Theorem 9.2 that autonomous evolution processes
corresponding to Morse-Smale semiflows on B are Morse-Smale evolution processes.
Subsequently we consider evolution processes obtained by nonautonomous pertur-
bations of Morse-Smale autonomous evolution processes. We specifically study pro-
cesses derived from certain nonautonomous differential equations already analyzed
in Section 7 for the persistence of isolated invariant manifolds. For these problems
we establish in Theorem 9.3 the following openness property: small nonautonomous
perturbations of autonomous Morse-Smale evolution processes are Morse-Smale evo-
lution processes.

In the last Section we apply these results to examples of nonautonomous per-
turbations of autonomous Morse-Smale systems. In particular we consider scalar
parabolic semilinear differential equations generating evolution processes on ade-
quate fractional power spaces and possessing periodic orbits. We also consider the
case of asymptotically autonomous evolution processes with a Morse-Smale limiting
behavior.

The relevance of Morse-Smale systems for the discussion of structural stability
of autonomous systems is well established in the literature. For nonautonomous
systems, structural stability has also been considered; see for example [31] in the
finite dimensional case, and [2] for local aspects in infinite dimensions.

The notion of Morse-Smale evolution process for a gradient like system introduced
in [4] proved useful for the discussion of qualitative aspects of the dynamics related
to structural stability of nonautonomous systems (see [9]). We believe that the
notion of Morse-Smale evolution process introduced here is appropriate for the
discussion of structural stability, but this topic should be addressed elsewhere.

2. Nonautonomous perturbations of autonomous ODEs. In this Section we
describe examples of nonautonomous perturbations of an autonomous ODE with
one hyperbolic periodic orbit. We consider the perturbations of the isolated invari-
ant cylinder corresponding to the periodic solutions of the unperturbed system. We
show that, while certain perturbations deform the cylinder into a tube fibered by
nonhyperbolic trajectories (a normally hyperbolic invariant manifold, see Sections
6-7), other perturbations preserve the cylinder but perturb the flow on it producing
hyperbolic behavior.

Let us start with the following example of a nonautonomous system of ordinary
differential equations on B = R2,{

ẋ = −y + x(1− x2 − y2) + δf1(t, x, y)

ẏ = x+ y(1− x2 − y2) + δf2(t, x, y)
(1)

where δ is a real parameter and f1, f2 are sufficiently smooth bounded functions.
In polar coordinates, x = ρ cos θ, y = ρ sin θ, system (1) is given as{

ρ̇ = ρ(1− ρ2) + δ(f1 cos θ + f2 sin θ)

ρθ̇ = ρ+ δ(−f1 sin θ + f2 cos θ) ,
(2)

with (f1, f2) also in polar coordinates.
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For δ = 0 we obtain the unperturbed autonomous system{
ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2) .
(3)

This system possesses only one fixed point (0, 0) and one stable limit cycle

Π = {(x, y) ∈ B : x2 + y2 = 1} .
Moreover, from the linearization of (3) around periodic solutions, it is known that
µ = 1 is a simple characteristic multiplier and Π is a hyperbolic periodic orbit. In
R×B the set of trajectories of periodic solutions of (3) forms a cylinder with Π as
its natural projection on B.

For small δ 6= 0 we first consider a nonautonomous perturbation of the form

(f1(t, x, y), f2(t, x, y)) = ϕ(x2 + y2)g(t)
(x, y)√
x2 + y2

, (4)

where g : R → R is a smooth bounded function and ϕ : R+ → [0, 1] is a smooth
cutoff satisfying

ϕ(r) =


r2, 0 ≤ r ≤ 1

4

1, 1
2 ≤ r ≤ 2

0, r ≥ 4 ,

and monotone for r ∈ (1/4, 1/2) and r ∈ (2, 4). In polar coordinates this is

(f1, f2) = ϕ(ρ2)g(t)(cos θ, sin θ) , (5)

which leads to the perturbed system{
ρ̇ = ρ(1− ρ2) + δϕ(ρ2)g(t)

θ̇ = 1 .
(6)

This is a simpler case of the example in [4, Section 3.4] where it is pointed out that
this perturbation deforms the cylinder into a tube containing an infinite number of
trajectories of nonhyperbolic global solutions. In view of this deformation we say
that a perturbation of the form (4) is a normal perturbation with respect to the
invariant cylinder.

Our next example uses a perturbation of the form

(f1(t, x, y), f2(t, x, y)) = ϕ(x2 + y2)(x sin t− y cos t)
(y,−x)√
x2 + y2

, (7)

which in polar coordinates is

(f1, f2) = ρϕ(ρ2) sin (t− θ)(sin θ,− cos θ) , (8)

leading to the perturbed system{
ρ̇ = ρ(1− ρ2)

θ̇ = 1 + δϕ(ρ2) sin (θ − t) .
(9)

As a consequence, the perturbation preserves the invariant cylinder corresponding
to the periodic orbit,

R×Π = {(t, x, y) ∈ R× B : x2 + y2 = 1} ,
but changes completely the dynamics on the cylinder. In fact, for δ 6= 0 the per-
turbed flow on the cylinder contains exactly two trajectories of hyperbolic solutions
of (1). To see this, we change our polar coordinates to a co-rotating frame with
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respect to the periodic orbit, (ρ, θ) 7→ (ρ, ψ) with ψ = θ − t. This substitution
changes only the second equation of (9) and we obtain the autonomous system in
the new polar coordinates {

ρ̇ = ρ(1− ρ2)

ψ̇ = δϕ(ρ2) sinψ .
(10)

An easy integration shows that the solutions have the form

ρ(t) =

{[
1− (1− 1/ρ2

0)e−2t
]−1/2

if ρ0 6= 0 ,

0 if ρ0 = 0 ,

ψ(t) =


2 arctan

(
tan(ψ0/2) exp(δ

∫ t
0
ϕ(ρ2(s))ds)

)
if ψ0 ∈ (−π, π) (mod 2π) ,

π if ψ0 = π (mod 2π) .

(11)

We observe that if ρ0 = 1, then ρ(t) = 1 for all t ∈ R and (with the usual (mod 2π)
polar identifications) we can distinguish three equilibria of (10), namely (0, 0), (1, 0),
and (1, π). In the coordinates (ρ, θ) these equilibria correspond to the solutions
ξ0(t) = (0, t), ξ1(t) = (1, t), and ξ2(t) = (1, π + t) of (9). In the original coordinates
(x, y) they correspond to the solutions ζ0(t) = (0, 0), ζ1(t) = (cos t, sin t), and ζ2(t) =
(− cos t,− sin t) of (1).

For δ 6= 0 the three equilibria of the autonomous equation (10) are hyperbolic.
The origin is a source (Morse index 2) and the remaining equilibria, one is a saddle
(Morse index 1) and the other is a sink (Morse index 0). Moreover, the two equi-
libria (1, 0) and (1, π) exchange their stability with the sign of δ. In addition, the
phase diagram of (10) shows the equilibria (1, 0) and (1, π) connected by two orbits
completing the circle of radius 1, see Figure 1. These orbits run from (1, 0) to (1, π)
if δ > 0 and from (1, π) to (1, 0) if δ < 0.

(0,0)(1, )p (1,0)

Figure 1. Phase portrait of the autonomous equation (10) for δ > 0.

These facts indicate that, if δ 6= 0, the solutions ζ1 and ζ2 of (1) are hyper-
bolic, see [2, Section 4.3], [8, Definition 8.1]. Indeed, additional computations show
that the linearizations around these solutions admit exponential dichotomies with
exponent β = min(δ, 2).
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Each bounded global orbit of the planar autonomous system (10) is either an equi-
librium or a connecting orbit between two different equilibria. Since the equilibria
have different Morse indices the solutions of (1) corresponding to the connecting
orbits cannot be hyperbolic. Therefore, the nonautonomous system (1) admits only
three hyperbolic solutions, ζ0, ζ1 and ζ2.

In view of these observations we say that a perturbation of the form (7) is a
tangential perturbation with respect to the invariant cylinder.

These examples illustrate two types of perturbations of invariant cylinders cor-
responding to periodic orbits: the normal perturbations which deform the cylinders
into tubes fibered by an infinite number of trajectories of nonhyperbolic solutions,
and the tangential perturbations which reduce the cylinders corresponding to pe-
riodic orbits to a finite set of trajectories of hyperbolic solutions and their hetero-
clinics. Therefore a definition of Morse-Smale nonautonomous system that takes
into consideration the periodic orbits of autonomous systems has to comprise both
types of perturbations.

3. Semiflows and evolution processes. We start by recalling the well-known
notion of a semiflow.

Definition 3.1. Let E be a Banach space and let Ck(E,E), k ≥ 1, be the set
of all bounded Ck transformations of E, not necessarily injective, with bounded
derivatives up to the order k. A Ck semiflow on E is a map

R+ 3 s 7→ T (s) ∈ Ck(E,E)

such that T (0) = Id ∈ Ck(E,E) and

T (s1) ◦ T (s2) = T (s1 + s2), s1, s2 ≥ 0.

One assumes also that the map

R+ × E 3 (s, x) 7→ T (s)x ∈ E
is continuous.

For a semiflow one can define the notions of global orbits, invariant sets and global
attractors, see e.g. [23], [38], [13]. The qualitative theory of dynamical systems
involves the study of these global attractors and one of the essential tools available is
the Morse-Smale property (see [34], [24] and [32]). Most of these notions introduced
in the case of semiflows have been recently extended to the case of nonautonomous
systems with the consideration of evolution processes and also skew product flows,
see in particular [2], [30], [8] and the references therein. Here we will stay in the
framework of evolution processes.

Let ∆ be the diagonal of R × R and consider ∆+ = {(t, τ) ∈ R × R : t ≥ τ}
which is a manifold with boundary ∆ and, moreover, is a groupoid acting on R.
Furthermore, let F be a given metric space of parameters, which in applications
will be suitably chosen depending on the problem in view.

Definition 3.2. A Ck evolution process on a Banach space B parameterized by
an element f ∈ F is a mapping Sf from ∆+ into Ck(B,B) and such that
(i) Sf (t, σ) ◦ Sf (σ, τ) = Sf (t, τ) for all t ≥ σ ≥ τ ,
(ii) Sf (τ, τ) = Id ∈ Ck(B,B) for all τ ∈ R,
(iii) the map

∆+ × B 3 ((t, τ), x) 7→ Sf (t, τ)x ∈ B
is continuous.
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Remark 1. Note that a nonautonomous differential equation on B, satisfying con-
ditions of existence, uniqueness and global continuation of solutions, defines an
evolution process on B.

Definition 3.3. The map S : F ×∆+ × B → B given by

S(f, (t, τ), x) := Sf (t, τ)x ,

called the global evolution process, is assumed to be continuous and it is used to
analyze the dependence on f ∈ F for a given family of evolution processes.

Definition 3.4. Let f ∈ F be such that a Ck evolution process Sf satisfies
Sf (t, τ) = Tf (t − τ), t ≥ τ , for a certain family Tf (s), s ≥ 0. It is easy to see
that Tf is a semiflow of Ck transformations of B. In this case the evolution process
Sf is called an autonomous evolution process. Otherwise, Sf is said to be nonau-
tonomous. Conversely, if Tf (s), s ≥ 0, is a semiflow of Ck transformations of B,
then by defining Sf (t, τ) := Tf (t − τ) it can be seen that Sf is an autonomous
evolution process on B (see [5], [10], [6]).

Definition 3.5. A continuous function z : R → B is called a global solution for
Sf (·, ·) if one has Sf (t, τ)z(τ) = z(t) for all t ≥ τ , t, τ ∈ R. A family of sets
{Af (t) ⊂ B, t ∈ R}, is said to be invariant under Sf (·, ·) if Sf (t, τ)Af (τ) = Af (t)
for all t ≥ τ .

Definition 3.6. Under appropriate smoothness conditions of the global evolution
process S(f, (t, τ), x) we define its derivative with respect to t on the diagonal ∆

D1[Sf (t, τ)x]t=τ = lim
s→0+

Sf (τ + s, τ)x− x
s

with (τ, x) from a suitable domain D∆(S) ⊂ R × B depending on the particular
problem in view. This domain D∆(S), in the applications we envisage, will contain
the set corresponding to the global solutions.

For instance, if we consider evolution processes generated by ODEs on B = Rn,
then D∆(S) = R × Rn. For evolution processes generated by delay differential
equations, where B = C([−r, 0],Rn) we have D∆(S) = R× B.

4. Comparing evolution processes. In order to compare evolution processes, in
particular autonomous with nonautonomous processes and if, moreover, we want to
analyze some stable structures that appear in nonautonomous evolution processes
on B, we will see in the sequel that any Ck evolution process on B induces a Ck

semiflow on R× B.
For instance, the equation (1) for δ = 0 defines a Morse-Smale semiflow on

B = R2. For δ > 0, the perturbed equation defines a nonautonomous process in
the same space. Both processes can be considered and compared as semiflows on
B1 = R× R2 generated by the equation

t′ = 1

x′ = −y + x(1− x2 − y2) + δf1(t, x, y)

y′ = x+ y(1− x2 − y2) + δf2(t, x, y) .

(12)

The main objective of the present paper is the introduction of a notion of Morse-
Smale process which allows the comparison as semiflows of perturbed with unper-
turbed processes.
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Proposition 1. Any Ck evolution process Sf (·, ·) on B induces a Ck semiflow Tf (·)
on E = R× B.

Proof. In fact, for any s ≥ 0 and (τ, x) ∈ R× B one defines

Tf (s)(τ, x) := (τ + s, Sf (τ + s, τ)x) (13)

and it is easy to see that Tf is a Ck semiflow (see [30, Theorem 2.4] and
[2, p. 56]).

Corollary 1. Let D1[Sf (t, τ)x]t=τ be defined as in Definition 3.6. Then, assuming
that the domain D∆(S) has a differentiable structure, the semiflow above induces
a vector field Xf defined in R× B by

Xf (τ, x) = (1, D1[Sf (τ + s, τ)x]s=0) = (1, D1[Sf (t, τ)x]t=τ ) .

Thus, the vector field Xf defines the autonomous ODE in E = R×B of equations{
τ ′ = 1

x′ = D1[Sf (t, τ)x]t=τ .
(14)

By eliminating time, one arrives to the nonautonomous system in B given by

dx

dτ
= D1[Sf (t, τ)x]t=τ := Ff (τ, x) . (15)

Remark 2. If z = z(t) is a global solution for Sf (·, ·) then the global curve (trajec-
tory) ξ(τ) = (τ, z(τ)), τ ∈ R, is a global solution for Tf (·). In fact, we have

Tf (s)ξ(τ) = (τ + s, Sf (τ + s, τ)z(τ)) = (τ + s, z(τ + s)) = ξ(τ + s), s ≥ 0, τ ∈ R .

5. Pullback attractors. A central object of the study of any dynamical system is
the asymptotic behavior of its solutions. This leads to the consideration of a global
attractor which under many forms is a notion pervasive in the literature. Hereafter
we will use the following notion of pullback attractor, see [30, 8] and the references
therein.

Definition 5.1. A family of nonempty compact sets {Af (t) ⊂ B, t ∈ R} is a
pullback attractor of the evolution process Sf (·, ·) if it is invariant under Sf (·, ·),
attracts all bounded subsets B of B in the pullback sense, that is

lim
τ→−∞

dist(Sf (t, τ)B,Af (t)) = 0 for all t ∈ R ,

where dist(·, ·) represents the Hausdorff semidistance, and is the minimal family of
closed sets pullback attracting all bounded sets of B.

For our purposes it is essential to consider the characterization of pullback at-
tractors for evolution processes and their behavior under perturbation. These topics
have been considered in the literature and here, for completion, we only restate the
needed results. The next Proposition follows essentially from [8, Theorem 1.17,
Corollary 1.18 and Lemma 1.19].

Proposition 2. If a pullback attractor {Af (t) ⊂ B, t ∈ R} does exist for an evolu-
tion process Sf (·, ·) on B and

⋃
t∈RAf (t) is bounded in B, then, for each t ∈ R, we

have that Af (t) is the set of all values z(t) where z : R→ B is a global and bounded
solution for Sf (·, ·). Moreover, if Sf (·, ·) is autonomous, then each Af (t) of the
family coincides with the global attractor Af of the associated semiflow.
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To study the dependence of global or pullback attractors on the parameter f ∈
F the appropriate notion is upper semicontinuity. The following proposition is
motivated by [30, Theorem 3.36]. See also [8, Proposition 1.20 and Theorem 3.6].

Proposition 3. Suppose that the global evolution process S : F × ∆+ × B → B
has a pullback attractor {Af (t) ⊂ B, t ∈ R} for each f ∈ F . If the closure of⋃
f∈F

⋃
t∈RAf (t) is compact, then the map F 3 f 7→ Af (t) is upper semicontinuous

for all t ∈ R, that is

lim
f→f0∈F

dist(Af (t), Af0(t)) = 0 for all t ∈ R .

6. Hyperbolic and partially hyperbolic solutions. Consider an evolution pro-
cess Sf (t, τ) as in Definition 3.2 and let Ff (τ, x) be defined as in (15).

Definition 6.1. A global and bounded solution z0 = z0(t) of

dx

dτ
= Ff (τ, x) (16)

is said to be hyperbolic if the linear equation

y′ = Bf (τ)y , (17)

with Bf (τ) :=
∂Ff

∂x (τ, z0(τ)), possesses an exponential dichotomy, see [25, Definition

7.6.1]. In this case, if Ff (τ, x) is of class C1 and under mild conditions (see [30,
Section 6.2], [2, Section 6.2], [25, Chapter 6], [14] and [5]), then z0 has a positively
invariant local stable C1 manifold and a negatively invariant local unstable C1 man-
ifold, the invariance being under the semiflow Tf on E = R×B, and both manifolds
contain the graph α = {(τ, z0(τ)) : τ ∈ R} of z0; one denotes them by W s

loc(α) and
Wu
loc(α), respectively.

We assume in the following that any evolution process Sf (·, ·) considered admits
a pullback attractor satisfying the hypotheses of Corollary 1, Propositions 2 and 3.
In addition, we suppose that Sf (·, ·) has the following reversibility property: Sf (t, τ)
restricted to Af (τ) is injective onto Af (t) for all t ≥ τ ∈ R and all f ∈ F , (hence a
homeomorphism); also the derivative of Sf (t, τ) restricted to Af (τ) is injective.

Definition 6.2. Applying the semiflow Tf to Wu
loc(α) one obtains the (global)

unstable manifold Wu(α) of z0 which is, in general, immersed in R× B.

If instead, the linear equation (17) corresponding to a global and bounded solu-
tion z0 of (16) admits an exponential trichotomy (see [2, Section 8.1]), the solution
z0 is said to be partially hyperbolic. In this case, under adequate conditions on
Ff (τ, x), z0 possesses a center manifold invariant under the semiflow Tf , see [2,
Chapter 8], [40, 12]. Here we will consider isolated invariant manifolds that are
normally hyperbolic in the sense that the linearization around each solution with
trajectory in the manifold has an exponential trichotomy with a two dimensional
center (or intermediate, [2, p. 172]) manifold.

Remark that all these manifolds in R × B have dimension at least 1 since they
must contain the graph α = {(t, z0(t)) : t ∈ R} of the trajectory corresponding
to the solution z0. Hence, hyperbolicity of the solution z0 corresponds to a center
manifold of dimension r = 1. A periodic orbit with minimum period T > 0 of
a semiflow Tf is hyperbolic if the corresponding Poincaré map has exactly one
simple multiplier µ = 1. In this case, the solution z0 of the autonomous evolution
process Sf (t, τ) = Tf (t− τ), t ≥ τ , is partially hyperbolic. The hyperbolic periodic
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orbit of Tf generates a cylinder in R × B composed of graphs of the solutions
zτ (·) = Tf (τ)z0(·), 0 ≤ τ < T , hence defining a center manifold of dimension r = 2
embedded in R× B which is normally hyperbolic.

7. Isolated invariant manifolds. In the following we collect some results on
the behavior of certain isolated invariant manifolds for differential equations under
nonautonomous perturbations. We consider specifically invariant manifolds associ-
ated to hyperbolic equilibria and hyperbolic periodic orbits.

7.1. Hyperbolic equilibria. Let Y ⊆ X be Banach spaces. Assume L is a linear
operator generating a C0-semigroup of bounded linear operators in X and let g ∈
C1(Y,X). We consider either the finite dimensional case Y = X = Rn or, in infinite
dimensions, the case of −L sectorial and Y = Xα, the fractional power space of
−L with appropriate α ∈ (0, 1). We denote by Cε(R, C1(Y,X)) the metric space
of continuous functions f = f(t, z) uniformly Lipschitz continuous for t ∈ R and
differentiable in z with uniform ε-bounded C1-norm, i.e.

sup
t∈R

sup
z∈Y

(
‖f(t, z)‖X + ‖fz(t, z)‖L(Y,X)

)
≤ ε .

Let z0 denote a hyperbolic equilibrium of the autonomous system

ż = Lz + g(z) . (18)

Then for fε ∈ Cε(R, C1(Y,X)) the nonautonomous perturbed equation

ż = Lz + g(z) + fε(t, z) (19)

has the following properties:
There is an ε0 > 0 such that for each 0 < ε ≤ ε0 the nonautonomous system (19)

has a global solution zε = zε(t) uniformly close to z0. This follows from the fixed
point property of the variation of constants equation associated to (19) using the
hyperbolicity of z0 and the projections onto its stable and unstable manifolds.

Moreover, zε(·) → z0 as ε → 0 and zε(·) is a hyperbolic solution of (19) since
the linearization of (19) around zε has an exponential dichotomy. This follows from
[25, Theorem 7.6.11], see also [37, Theorem 76.1]. For more details see [5].

Remark that the trajectory (t, z0) corresponds to the hyperbolic solution of
(19)ε=0 and the trajectory (t, zε(t)) is the corresponding perturbed isolated invari-
ant manifold.

According to Definition 3.2 and Remark 1 equation (19) defines an evolution
process on B = Y with F = Cε0(R, C1(Y,X)).

7.2. Hyperbolic periodic orbits. Let Γ = {ξ0(t), 0 ≤ t < ω} ⊂ Y denote a
hyperbolic periodic orbit of (18) with ξ0(·) a periodic solution with period ω > 0.
The corresponding cylinder of trajectories

M0 = {(t, ξ0(τ + t)), 0 ≤ τ < ω, t ∈ R}

is an isolated invariant manifold of (18) in (t, z)-space with parameters (t, τ) ∈
R× [0, ω).

Then for fε ∈ Cε(R, C1(Y,X)) the nonautonomous perturbed equation (19) sat-
isfies the following:

There is an ε0 > 0 such that for each 0 < ε ≤ ε0 the nonautonomous system (19)
has an isolated invariant manifold Mε uniformly close to M0 of the form

Mε = {(t, ξε(t, τ)), 0 ≤ τ < ω, t ∈ R} .
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Moreover Mε → M0 as ε → 0 and is normally hyperbolic since the linearization
of (19) around each solution ξε(·, τ) with trajectory in Mε has an exponential
trichotomy with a two dimensional center manifold.

Remark that, in general, as ε → 0 the solution ξε(·, 0) does not approach ξ0(·)
as shown by the examples of nonautonomous perturbations of autonomous ODEs,
see system (1) with the tangential perturbation (7).

The persistence of these isolated invariant manifolds is supported by the following
results:

For z ∈ Rn, by [22, 39] there is a local change of coordinates around ξ0(·) of the
form

z = ξ0(θ) +Q(θ)ρ ,

with (θ, ρ) ∈ R× Rn−1 which applied to (19) yields{
θ̇ = 1 + S(θ, ρ) + Sε(t, θ, ρ)

ρ̇ = A(θ)ρ+R(θ, ρ) +Rε(t, θ, ρ)

where S(·, ρ) = O(|ρ|), R(·, ρ) = O(|ρ|2), (Sε, Rε) ∈ Cε(R, C1(R×Rn−1)), and A(·)
is periodic with period ω. By Floquet theory a fundamental system of solutions of
the linear equation dρ/dθ = A(θ)ρ has the form P (θ)eBθ with P (·) periodic with
period ω, and the change of coordinates ρ(t) = P (θ)r(t) yields{

θ̇ = 1 + SF (θ, r) + SFε (t, θ, r)

ṙ = Br +RF (θ, r) +RF0,ε(t, θ, r) +RFε (t, θ, r)
(20)

where SF (·, r) = O(|r|), RF (·, r) = O(|r|2), (SFε , R
F
ε ) ∈ Cε(R, C1(R × Rn−1))

and RF0,ε(·, ·, r) = O(ε|r|), see [22, Chapter VII.1]. This brings about the role of
the characteristic multipliers of the hyperbolic periodic orbit of ξ0(·). If λj , j =
1, . . . , n − 1, denote the eigenvalues of B, then the characteristic multipliers are
given by

µj = eωλj , 1 ≤ j ≤ n− 1 .

Hence system (20) is equivalent to
θ̇ = 1 + S̃F (θ, r1, r2) + S̃Fε (t, θ, r1, r2)

ṙ1 = B1r1 + R̃F (θ, r1, r2) + R̃F0,ε(t, θ, r1, r2) + R̃Fε (t, θ, r1, r2)

ṙ2 = B2r2 + R̂F (θ, r1, r2) + R̂F0,ε(t, θ, r1, r2) + R̂Fε (t, θ, r1, r2)

(21)

where, by the hyperbolicity of ξ0(·), there is a real α0 > 0 such that the matrices
B1 and B2 satisfy

Re{σ(B1)} ≥ α0 , Re{σ(B2)} ≤ −α0 .

Then, by [22, Theorem VII.2.1], this system has an isolated invariant manifold of
the form

M̃ε = {(t, θ, r1, r2) : r1 = G1(t, θ, ε), r2 = G2(t, θ, ε), 0 ≤ θ < ω, t ∈ R} ,
with G1, G2, continuous of class C1 in θ and satisfying G1(t, θ, 0) = G2(t, θ, 0) = 0.

Moreover, M̃ε has a saddle-point structure in the sense that any solution of (21) is
such that r1 → 0 exponentially as t → −∞ and r2 → 0 exponentially as t → ∞
(both with asymptotic phase), see [22, Theorem VII.7.1].

This shows the existence of the isolated invariant manifold Mε of (19) with

ξε(t, θ) = ξ0(θ) +Q(θ)F (t, θ, ε) ,
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contained in a tubular neighborhood of the cylinder M0. The exponential tri-

chotomy of each solution ξε(·, θ) follows from the saddle-point property of M̃ε. We
also observe that the flow of (19) on Mε is equivalent to the equation

dθ

dt
= 1 + Sε(t, θ, 0) ,

with θ(0) ∈ [0, ω), see [21, Theorem 16–1].
For z ∈ Xα, by [25, Section 9.2] there is a local change of coordinates around

ξ0(·) generalizing the result of [22, 39]. In fact, by [25, Theorem 9.2.2] there exists
a closed subspace Y0 ⊂ X of codimension 1 and a C2 map Q : Γ→ L(X) such that
for each y ∈ Γ the linear map Q(y) is an isomorphism of Y0 onto its image with
Q(y)Y0 ⊕ TyΓ = X, and a neighborhood of Γ has the form

NΓ = {y +Q(y)x : y ∈ Γ, x ∈ Y0, ‖x‖ < δ} ,
with (y, x) 7→ y +Q(y)x a C2 diffeomorphism onto this neighborhood.

Then, assuming t 7→ ξ0(t) ∈ X is C2 and using y = ξ0(s), we introduce in NΓ

the coordinates (s, x) and write

z = ξ0(s) + Q̄(s)x , (s, x) ∈ R× Y0 ,

for ‖x‖ < δ, where Q̄(s) = Q(ξ0(s)) and s 7→ Q̄(s) is of class C2 and periodic with
period ω > 0.

Using these coordinates, the flow of (18) in the neighborhood NΓ has the form{
ṡ = 1 + S(s, x)

ẋ = Bx+B0(s)x+R(s, x) ,
(22)

where the linear operator B with D(B) = D(L)∩Y0 is sectorial in Y0, and B0(s) ∈
L(Y0) is a family of bounded linear operators ω-periodic in s. Moreover, defining
Y α0 = Y0 ∩ Xα, we have that S and R are C1 functions of s ∈ R and x ∈ Y α0 ,
‖x‖α < δ̄, which are also ω-periodic in s and vanish for x = 0, see [25, Section 9.2].
In fact, by an appropriate choice of projection P ∈ L(X), with N(P ) ⊂ Y0, derived
from an extension of Whitney’s embedding theorem (see [25, Theorem 9.2.1]), we
have B = (I −P )L|Y0, which implies that B is sectorial. Similarly, the flow of (19)
in the neighborhood NΓ becomes{

ṡ = 1 + S(t, s, x)

ẋ = Bx+B0(s)x+R(t, s, x) ,
(23)

with C1 functions S(t, s, x) and R(t, s, x) of the form

S(t, s, x) = S(s, x) + Sε(t, s, x)

R(t, s, x) = R(s, x) +Rε(t, s, x) ,

where S(·, x) = O(‖x‖α), R(·, x) = O(‖x‖2α) and (Sε, Rε) ∈ Cε(R, C1(R× Y α0 ,R×
Y0)).

Let T (t, τ), t ≥ τ , denote the family of evolution operators on X generated by
the linearization of (18) around ξ0(t), that is T (t, τ)z0 = z(t, τ, z0) for z0 ∈ X where
z(t) = z(t, τ, z0), t ≥ τ , solves

ż = Lz + gz(ξ0(t))z , z(τ) = z0 .

The characteristic multipliers of ξ0(t) are the nonzero eigenvalues of the Poincaré
map

U(t) = T (t+ ω, t) .
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We recall that the eigenvalues of the Poincaré map are independent of t and if
L has compact resolvent then σ(U(·)) \ {0} is composed entirely of eigenvalues
µj , j = 1, 2, . . . , [25, Lemma 7.2.2].

Due to hyperbolicity, µ = 1 is a simple characteristic multiplier of ξ0(t), with the
remaining spectrum of U(·) away from the unit circle. Moreover, the multipliers 6= 1
are exactly the multipliers of the linear equation dx

ds = Bx+B0(s)x corresponding
to the linearization around x = 0 of the second equation in (22). This equation has
no multipliers on the unit circle and, therefore, has an exponential dichotomy. See
[25, Section 9.3] for details.

Let T̃ (·, ·) denote the linear evolution process corresponding to dx
ds = Bx+B0(s)x

and consider the Poincaré map Ũ(s) = T̃ (s + ω, s). By [25, Theorem 7.2.3], if

σ1 is a spectral set of σ(Ũ(·)) \ {0} then, for each s the space Y0 decomposes as

Y0 = X1(s)⊕X2(s), the direct sum of closed invariant subspaces under Ũ(s), and

σ(Ũ(s)|X1(s)) = σ1 , σ(Ũ(s)|X2(s)) = σ(Ũ(s)) \ σ1 ,

where T̃ (s2, s1), s2 ≥ s1, maps X1(s1) one-to-one onto X1(s2). Moreover, there is a
family of bounded invertible linear operators P1(s) : X1(s0)→ X1(s), with period ω
in s and P1(s0) = Id, and a bounded linear operator C on X1(s0) with eωσ(C) = σ1

such that

T̃ (s2, s1)x = P1(s2)eC(s2−s1)P−1
1 (s1)x ,

for all x ∈ X1(s1) and all s2 ≥ s1. Then, using a decomposition x = x1 + x2 ∈
X1(s) ⊕X2(s) and letting x1 = P1(s)y with y ∈ X1(s0), the above system (23) is
equivalent to 

ṡ = 1 + SF (t, s, y, x2)

ẏ = Cy + R̃F (t, s, y, x2)

ẋ2 = D(s)x2 + R̂F (t, s, y, x2) ,

(24)

where D(s) is a sectorial operator in X2(s), see [25, Section 7.2 ex.2]. This again
brings about the role of the characteristic multipliers in the discussion of the as-
ymptotic behavior of the flow in the neighborhood NΓ.

Then, by a direct application of [25, Theorem 9.1.1] system (23) has an isolated
invariant manifold of the form

M̃ε = {(t, s, x) : x = G(t, s, ε), 0 ≤ s < ω, t ∈ R} ,

with continuous G of class C1 in s and G(t, s, 0) = 0 as required. Moreover, the
saddle-point nature of this manifold is exposed in (24) by choosing the spectral set
σ1 as the set of all multipliers outside the unit circle. It also exhibits the exponential
trichotomy of each global solution ξε(·, s) of (19) with trajectory in Mε.

8. Recurrent behavior. The definition of Morse-Smale systems on B involves the
concept of nonwandering behavior for hyperbolic critical orbits, see [34, 24, 32]. For
the case of processes, we instead introduce the notion of recurrent behavior on R×B
neighborhoods of graphs of global solutions (trajectories).

Let B(l, 0) be the ball in B of radius l > 0 centered at the origin and let ξ(t) =
(t, z(t)) be the trajectory in R × B corresponding to a bounded global solution z
in B. When the process has a pullback attractor, one defines the neighborhood
U(t, l, z(t)) of z(t) in Af (t) by the expression

U(t, l, z(t)) := {z(t) +B(l, 0)} ∩Af (t) , t ∈ R .
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Definition 8.1. A trajectory ξ : R→ R×B associated to a global bounded solution
z(·) of (16) given by ξ(t) := (t, z(t)), t ∈ R, is said to produce a recurrent behavior
of Sf (·, ·) (or of Tf (·)) if given a time t̄ ∈ R and a neighborhood U(t̄, l, z(t̄)) of z(t̄)

in Af (t̄) ⊂ B there exists z̄ ∈ U(t̄, l, z(t̄)) with z̄ 6= z(t̄) such that for any T > 0
the solution z̃(·) of (16) with z̃(t̄) = z̄ satisfies z̃(t±) ∈ U(t±, l, z(t±)) for some
t+ > t̄ + T and t− < t̄ − T . For simplicity, in this case we say that the trajectory
ξ : R→ R× B is recurrent.

This definition of recurrent behavior is illustrated in Figure 2, where ξ̃ := (t, z̃(t))
and Uτ := U(τ, l, z(τ)).

t

x

x
~

t+t - t

U
t

U t+Ut-

z( )t

z

z(t )- z(t )+

z(t )-~ z(t )+
~

Figure 2. Recurrent behavior for ξ = (t, z(t)). Here t+ − t̄ > T and

t̄− t− > T .

Definition 8.2. Consider a global bounded solution z(·) of (16) and letMz denote
a manifold containing the trajectory ξ(t) = (t, z(t)), t ∈ R, such thatMz is invariant
under the semiflow Tf on R × B and has t-section Mt

z := Mz ∩ ({t} × B) with
natural B-projection PBMt

z contained in Af (t). The trajectory ξ is said to produce
a recurrent behavior of Sf (·, ·) in the complement ofMz if given a time t̄ ∈ R and a

neighborhood U(t̄, l, z(t̄)) of z(t̄) in Af (t̄) ⊂ B there exists z̄ ∈ Af (t̄)\PBMt̄
z (hence

z̄ 6= z(t̄)) such that for any T > 0 the solution z̃(·) of (16) with z̃(t̄) = z̄ satisfies
z̃(t±) ∈ U(t±, l, z(t±)) for some t+ > t̄ + T and t− < t̄ − T . For simplicity, in this
case we say that the trajectory ξ : R→ R× B is recurrent outside Mz.

Remark 3. A trajectory in R×Rn of an autonomous evolution process correspond-
ing to a constant hyperbolic solution in Rn with a homoclinic orbit is recurrent. On
the other hand, any solution of an autonomous evolution process corresponding to
a constant solution of a gradient Morse-Smale flow in Rn defines a nonrecurrent
trajectory in R× Rn.

Remark 4. In contrast with the second observation of the previous remark, a
trajectory in R× Rn corresponding to a periodic solution in Rn with a hyperbolic
orbit is always recurrent. In fact, the process exhibits recurrent behavior on the
invariant cylinder generated by the periodic orbit, which is the center manifold in
R× Rn of the partially hyperbolic periodic solution.

Example 1. A particular case of that special situation is given by the autonomous
Morse-Smale ODE system on B = R2, considered in (3) of Section 2:{

ẋ = −y + x(1− x2 − y2)

ẏ = x+ y(1− x2 − y2) .
(25)
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The cylinder in this case is the subset of R×R2 given by R×{(x, y) : x2 + y2 = 1}
which is an invariant manifold for the lifted system:

t′ = 1

x′ = −y + x(1− x2 − y2)

y′ = x+ y(1− x2 − y2) .

(26)

Observe that all the global solutions of (26) corresponding to the periodic solu-
tions of (25) are partially hyperbolic and their graphs are fibers of the same normally
hyperbolic cylinder, i.e., the union of all graphs of trajectories (t, zτ (t)) correspond-
ing to the periodic solutions zτ (t) = (cos(t + τ), sin(t + τ)) in R2 for τ ∈ [0, 2π).
Moreover, the recurrent behavior is restricted to this cylinder. In fact, any global
solution (t, z(t)) of the lifted system (26) different from the trivial solution (t, 0, 0)
and not in the cylinder is in the stable manifold of a solution corresponding to a
periodic orbit, and z(t) either goes to (0, 0) or becomes unbounded as t → −∞.
Therefore, if (t, z(t)) denotes a normally hyperbolic solution on the cylinder, the
process generated by (25) when restricted to the complement of the cylinder has
no recurrent behavior, although (t, z(t)) produces recurrent behavior on the cylin-
der. Moreover, this recurrent behavior on the cylinder is mostly preserved by the
tangential components of generic perturbations, as illustrated in Section 2. This
suggests that in the case of solutions on normally hyperbolic manifolds we should
only study the (non)occurrence of recurrent behavior outside the center manifolds,
since on the center manifolds recurrent behavior is always expected.

9. Morse-Smale evolution processes. According to Definition 3.3 the evolution
process Sf (·, ·) depends continuously on f ∈ F where the parameter space F is a
metric space appropriately chosen depending on each problem. Recall that for each
f ∈ F the evolution process Sf (·, ·) is assumed to:
(i) admit a pullback attractor satisfying the hypotheses of Propositions 2, 3;
(ii) have the reversibility property, (see Section 6).

Our definition of Morse-Smale process follows from the previous observations
regarding the occurrence and location of recurrent behavior in Example 1. We start
by identifying the sets of global solutions which are relevant for this definition.

We letMh
f ⊂ R×B denote the set of all graphs of hyperbolic solutions of Sf (·, ·),

Mh
f = {(t, z(t)) : z(·) hyperbolic solution of Sf (·, ·), t ∈ R} .

We also let Mnh
f denote the set of all normally hyperbolic isolated invariant mani-

folds MT
f satisfying the following:

(T1) MT
f are fibered by graphs of partially hyperbolic solutions of Sf (·, ·) possessing

exponential trichotomy with two dimensional center manifold;
(T2) for each t ∈ R the natural B-projection of the t-section of MT

f (which is in

Af (t)) is homeomorphic to a circle.

Such invariant manifolds will be called tubes hereafter.
For each tubeMT

f we define its unstable manifold, Wu(MT
f ), as the union of all

the unstable manifolds of its fibers α ∈MT
f ,

Wu(MT
f ) =

⋃
α∈MT

f

Wu(α) .

Similarly we define the local stable manifold, W s
loc(MT

f ).
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We say that two manifolds Wu(MT
f,1) and W s

loc(MT
f,2) are transverse if for all

t ∈ R their t-sections have B-projections transversal in B in the usual sense. Likewise
we define transversality between unstable and local stable manifolds of hyperbolic
solutions, Wu(α1),W s

loc(α2), or hyperbolic solutions and tubes.

Definition 9.1. Assume that:

(1) The sets Mh
f and Mnh

f are finite;

(2) All unstable manifolds of elements in Mh
f and Mnh

f are finite dimensional.
Moreover, all intersections between these unstable manifolds and local stable
manifolds are transverse;

(3) All trajectories of hyperbolic solutions (with graphs inMh
f ) are nonrecurrent.

All trajectories of partially hyperbolic solutions with graphs in tubes (elements
of Mnh

f ) are nonrecurrent outside the tubes. Moreover, the sets Af (t) in the

pullback attractor of Sf (·, ·) are given by Af (t) = PBAtf , the natural B-
projections of the t-sections of Af defined as the union of all the unstable
manifolds of elements in Mh

f and Mnh
f , Af =

⋃
α∈Mh

f∪M
T
f
Wu(α).

Under these three conditions we say that the parameter f ∈ F defines a Morse-
Smale evolution process on B.

We next show the following:

Theorem 9.2. If Tf (t), t ≥ 0, is a Morse-Smale semiflow of Ck transformations
of B (with or without hyperbolic periodic orbits) then the autonomous Ck evolution
process on B defined by Sf (t, τ) = Tf (t− τ) is a Morse-Smale evolution process on
B.

Proof. If Af denotes the global attractor of the semiflow Tf then the family of
compact sets {Cf (t) = Af , t ∈ R} is the pullback attractor of the autonomous
evolution process defined by Sf (t, τ) = Tf (t − τ). In fact the family {Cf (t) =
Af , t ∈ R} attracts all bounded subsets B ⊂ B in the pullback sense,

lim
τ→−∞

dist(Sf (t, τ)B,Af ) = lim
τ→−∞

dist(Tf (t− τ)B,Af ) = 0 .

The critical elements of Tf are the unit sets {z0} where z0 is a fixed point, and the
periodic orbits. Since Tf is a Morse-Smale semiflow, the set of its critical elements is
finite and the fixed points and periodic orbits are hyperbolic. Moreover, their union
coincides with the nonwandering set Ω(f), see [32, Definition 3.1],[24, Definition
6.2.9]. Clearly the solutions z(t) = z0 of Sf (·, ·) corresponding to fixed points of Tf
are hyperbolic. Hence their graphs α = {(τ, z0), τ ∈ R} are elements of Mh

f . Also
the cylinders generated by the periodic orbits of Tf are normally hyperbolic, see
Section 6. Therefore each periodic orbit corresponds to a tube in Mnh

f . We next

show that Mh
f and Mnh

f consist exactly of these elements.

Starting with Mh
f we will argue by contradiction. Let z(·) denote a hyperbolic

solution of Sf (·, ·), that is, with graph α = {(t, z(t)), t ∈ R} ∈ Mh
f . Then, since

the evolution process is autonomous, z(·) is a solution of the semiflow Tf with
global bounded orbit γ in Af . By the Morse-Smale property of the semiflow Tf
which asserts that the nonwandering set Ω(f) is the union of the critical elements
of Tf , we have that the α-limit and ω-limit sets of the orbit γ are critical elements
of the semiflow Tf . We remark that since the periodic solutions of Sf (·, ·) are
partially hyperbolic, z(·) cannot correspond to a hyperbolic periodic orbit of Tf .
Then if z(·) does not correspond to a fixed point its orbit γ must connect two
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different critical elements c1, c2 of Tf . In fact, for c1 = c2 = c we cannot have
Wu(c) ∩ W s

loc(c) % c due to transversality since, in that case, the λ-lemma (see
[33, 32, 24]) implies infiniteness of Ω(f). Next, if c1 and c2 are distinct fixed points
of Tf , transversality between Wu(c1) and W s

loc(c2) also implies the strict inequality
dimWu(c1) > codimW s

loc(c2) since Wu(c1) ∩ W s
loc(c2) must contain the positive

semi-orbit of γ in W s
loc(c2). Therefore we have

dimWu(c1) > dimWu(c2) . (27)

This shows that the linearization of Sf (·, ·) around z(·) cannot possess an expo-
nential dichotomy which contradicts the hyperbolicity of z(·). By the same reason
c1 or c2 cannot be hyperbolic periodic orbits of Tf since the existence of a simple
multiplier µ = 1 for the corresponding Poincaré map prevents hyperbolicity of z(·).
Therefore we conclude that z(·) corresponds to a fixed point of Tf .

We now show that each tube inMnh
f is a cylinder generated by a periodic orbit of

Tf . Let α = {(t, z(t)), t ∈ R} denote the graph of a partially hyperbolic solution z(·)
of Sf (·, ·) corresponding to a fiber of a tube MT

f in Mnh
f . Repeating the previous

arguments we have that z(·) is a solution of the semiflow Tf with global bounded
orbit γ in Af . Moreover the α-limit and ω-limit sets of the orbit γ are critical
elements of the semiflow Tf . We remark that since z(·) is partially hyperbolic γ
cannot be a hyperbolic fixed point of Tf . Also, the critical elements cannot be
fixed points of Tf ; in fact, if the α-limit or the ω-limit set of γ is a unit set of
a fixed point, the linearization of Sf (·, ·) around the solution z(·) cannot admit
an exponential trichotomy with a two dimensional center manifold, since the fixed
points are hyperbolic. This implies that the critical elements are periodic orbits,
C1 and C2. Next, arguing again by contradiction, we show that γ cannot connect
two different periodic orbits. Assume that the periodic orbit C1 is the α-limit set
of γ, and C2 is the ω-limit. Consider the Poincaré map for the semiflow Tf defined
at a local cross-section of C1, and let i(C1) denote the number of multipliers µj
of this map outside the unit disk, |µj | > 1, counting multiplicities. We recall that
C1 is hyperbolic and its unstable manifold is finite dimensional. Then we have
dimWu

loc(C1) = i(C1) + 1. Likewise, defining i(C2) for the Poincaré map at a local
cross-section of C2 we have

codimW s
loc(C2) = i(C2) . (28)

We now consider a point p ∈ γ on the intersection between the global unstable
manifold of C1 and the local stable manifold of C2, that is p ∈Wu(C1)∩W s

loc(C2),
and obviously

dimWu(C1) = i(C1) + 1 . (29)

These manifolds intersect transversally at the point p and their intersection contains
the positive semi-orbit of γ. The same conclusions hold for each of the fibers of the
tubeMT

f . Moreover, by property (T2) all the orbits corresponding to fibers ofMT
f

have C1 as α-limit set and C2 as ω-limit set. Hence the intersection Wu(C1) ∩
W s
loc(C2) contains positive semi-orbits of all the solutions corresponding to fibers of
MT

f . This implies that the transversal intersection Wu(C1) ∩W s
loc(C2) is at least

two dimensional and

codimW s
loc(C2) ≤ dimWu(C1)− 2 .

From (28) and (29) we conclude that

i(C2) ≤ i(C1)− 1 .
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This shows that the linearization of Sf (·, ·) around z(·) cannot possess an exponen-
tial trichotomy which contradicts the partial hyperbolicity of z(·). Therefore we
must have C1 = C2 := C.

Again by transversality, invoking the λ-lemma and the finiteness of Ω(f), we
cannot have Wu(C)∩W s

loc(C) % C. Therefore we conclude that the solution z(·) is
a periodic solution of the autonomous semiflow Tf and corresponds to the periodic
orbit C. Hence the tube MT

f is the cylinder generated by C, and Mnh
f is the set

of all cylinders generated by periodic orbits of Tf . This completes the proof of
condition (1) of the Morse-Smale Definition 9.1. Condition (2) also follows because,
for the autonomous evolution process, we have

Tf (s)(τ, x) = (τ + s, Tf (s)x)

by Proposition 1. This implies that B-projections of t-sections of Tf -invariant man-
ifolds in R× B are Tf -invariant manifolds in B.

To prove condition (3) of the Morse-Smale Definition 9.1 we first consider the
trajectory ξ(t) = (t, z0), t ∈ R, corresponding to a hyperbolic fixed point z0 of Tf in
B. For a given time t̄ ∈ R let U(t̄, l, z0) denote the neighborhood of z0 in Af (t̄) ⊂ B
with l > 0 sufficiently small (less than the minimal distance between z0 and the
other critical elements of Tf ). Let z̄ ∈ U(t̄, l, z0) \ {z0}. Then the solution z̃(·)
of the autonomous evolution process with z̃(t̄) = z̄ 6= z0 is also a solution of the
semiflow Tf with the same initial condition z̃(t̄) = z̄. Then, by the Morse-Smale
property of the semiflow Tf the α-limit set and ω-limit set of the orbit of z̃(·)
are two distinct critical elements of Tf . Therefore at least one of these limit sets
is at a distance from z0 larger than l. This implies that the solution z̃(·) leaves
the neighborhood U(·, l, z0) definitively either forward or backward in time, i.e.,
ξ(·) is nonrecurrent by Definition 8.1. Similar arguments show that trajectories
corresponding to hyperbolic periodic orbits of Tf are nonrecurrent outside their
cylinders (Definition 8.2). This completes the proof.

This Theorem establishes the class of Morse-Smale autonomous evolution pro-
cesses on B. We now consider the evolution processes obtained by nonautonomous
perturbations of the elements in this class. From here on we study processes derived
from nonautonomous differential equations like the problems analyzed in Section 7
for the persistence of isolated invariant manifolds.

Let B ⊆ X be Banach spaces. Assume L is a linear operator generating a C0-
semigroup of bounded linear operators in X and let g ∈ C1(B, X). As in Section 7,
we consider either the finite dimensional case B = X = Rn or, in infinite dimensions,
the case of −L sectorial and B = Xα, with appropriate α ∈ (0, 1). We also assume
that the nonlinearity g ∈ C1(B, X) satisfies conditions ensuring the existence of
pullback attractors {A0(t), t ∈ R}, {Aε(t), t ∈ R} for the evolution processes gen-
erated by the differential equations (18), (19), (equations (30), (31) below). Let
F = Cε0(R, C1(B, X)) be the metric space of parameters, for ε0 sufficiently small.

Theorem 9.3. If the autonomous evolution process on B generated by

ż = Lz + g(z) (30)

is Morse-Smale, then for every fε ∈ F the nonautonomous evolution process on B
generated by the perturbed equation

ż = Lz + g(z) + fε(t, z) (31)

is also Morse-Smale.
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Proof. Let S0(·, ·) and Sε(·, ·) denote the evolution processes on B generated by
(30) and (31), respectively. As we proved in Theorem 9.2 the set Mh

0 of graphs of
hyperbolic solutions of S0(·, ·) is the set of graphs of hyperbolic fixed points z0 of
(30). Hence by Section 7.1, for 0 < ε ≤ ε0, the set Mh

ε of graphs of hyperbolic
solutions of Sε(·, ·) is the set of graphs of hyperbolic solutions zε(·) of (31). Moreover,
the unstable manifolds Wu(αε) and the local stable manifolds W s

loc(αε) of these
solutions zε(·) are C1 ε-close to the corresponding unperturbed manifolds, Wu(α0)
and W s

loc(α0), [25, Chapter 9].
LetMnh

0 denote the set of tubesMT
0 of the autonomous evolution process S0(·, ·)

and letMnh
ε denote the set of tubesMT

ε of Sε(·, ·). Then, each tubeMT
0 is a cylin-

der generated by a periodic solution ξ0(·) of (30). By Section 7.2, for 0 < ε ≤ ε0,
each tubeMT

ε is a normally hyperbolic isolated invariant manifold fibered by graphs
of partially hyperbolic solutions ξε(·, τ) of (31). Remark that the exponential tri-
chotomy for these solutions ξε(·, τ) allows for a small exponential behavior on the
central projection, see [35], [2, Section 8]. Also the unstable manifolds Wu(MT

ε )
and the local stable manifolds W s

loc(MT
ε ) are C1 ε-close to the corresponding un-

perturbed manifolds, Wu(MT
0 ) and W s

loc(MT
0 ). Therefore conditions (1) and (2)

of Definition 9.1 are satisfied.
Before addressing condition (3) we identify, for simplicity, the graphs αε in Mh

ε

with tubesMS
ε with a single fiber. We also identify the corresponding unstable and

local stable manifolds, Wu(MS
ε ) ∼= Wu(αε), W

s
loc(MS

ε ) ∼= W s
loc(αε). We let Mhs

ε

denote the set of these singular tubes.
To prove condition (3) we consider the case of a hyperbolic solution zε(·) of (31)

(hence defining a singular tubeMS
ε inMhs

ε ). For a given time t̄ ∈ R let U(t̄, l, zε(t̄))
denote the neighborhood of zε(t̄) in Aε(t̄) ⊂ B with l > 0 sufficiently small and let
z̄ ∈ U(t̄, l, zε(t̄)) \ {zε(t̄)}. Note that if U(t̄, l, zε(t̄)) \ {zε(t̄)} = ∅ the pullback
attractor of Sε(·, ·) reduces to {zε(t), t ∈ R} corresponding to the unique hyperbolic
solution zε(·), and the nonrecurrence is trivial.

If z̄ /∈ W s
loc(MS

ε ), for some large time t̄ + T 1 the solution z̃ε(·) of (31) with
z̃ε(t̄) = z̄ is either in some neighborhood of a tube MT

ε ∈ Mnh
ε , or else in some

neighborhood of another singular tube (MS
ε )′ ∈Mhs

ε with (MS
ε )′ 6=MS

ε . If z̃ε(t̄+
T 1) is in the local stable manifold of MT

ε or (MS
ε )′ then the solution z̃ε(t) does

not return to the neighborhood U(t, l, zε(t)) for t > t̄ + T 1. If, on the other hand,
z̃ε(t̄+ T 1) is not in the local stable manifold of MT

ε or (MS
ε )′ we repeat the same

argument with a neighborhood of a solution with graph inMT
ε or (MS

ε )′, shrinking
if necessary the original neighborhood. Then we obtain an increasing sequence of
times T j , j = 1, . . . , n, such that z̃ε(t̄+T j) is in the neighborhood of a solution with
graph in some tube inMhs

ε ∪Mnh
ε . Therefore we obtain a sequence of tubes visited

by the solution z̃ε(·). Moreover all the tubes in this sequence are distinct because the
invariant manifolds of the tubes of the perturbed evolution process Sε(·, ·) are ε-close
to the invariant manifolds of the tubes of the autonomous evolution process S0(·, ·)
which by transversality does not have cycles. We conclude that z̃ε(t) eventually
reaches the local stable manifold of a tube distinct from MS

ε , hence cannot return
to the neighborhood U(t, l, zε(t)) for t > t̄+ Tn.

If z̄ ∈W s
loc(MS

ε ), then z̄ is in the unstable manifold of some tube Mα
ε ∈Mhs

ε ∪
Mnh

ε distinct from MS
ε . Indeed this follows from the continuity properties of the

pullback attractor (see Propositions 2, 3, and also [4, Theorem 2.21]) since z̃ε(·) is
a global bounded solution of Sε(·, ·), therefore in {Aε(t), t ∈ R}. Hence there exists
a T 0 > 0 such that the solution z̃ε(·) is in a neighborhood of the isolated invariant
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setMα
ε for t < t̄−T 0. We conclude that z̃ε(t) leaves the neighborhood U(t, l, zε(t))

and cannot return to it for all t < t̄− T 0. This shows that the trajectory of z̃ε(·) is
nonrecurrent by Definition 8.1. Similar arguments show that the trajectory ξε(·) of
a partially hyperbolic solution zε(·) of Sε(·, ·) in a tubeMT

ε ∈Mnh
ε is nonrecurrent

outside MT
ε .

This concludes the proof of condition (3) of Definition 9.1 and shows that the
perturbed evolution process Sε(·, ·) is Morse-Smale.

10. Examples.

10.1. Morse-Smale evolution process on B = R2. The initial system (1) of
ordinary differential equations on B = R2 provides an example of a nonautonomous
perturbation of an autonomous Morse-Smale system in finite dimensional space.
Then, by Theorem 9.3 for small δ > 0 the nonautonomous evolution process Sδ(·, ·)
generated by (1) is also Morse-Smale.

10.2. Morse-Smale evolution process on B = H2α(S1). To provide an ex-
ample in infinite dimensional space B we consider the scalar parabolic semilinear
differential equation

ut = uxx + g(u, ux) + εf(t, x, u, ux) , x ∈ S1 = R/Z , (32)

where g : R2 → R is C2 and satisfies dissipative conditions of the form ug(u, 0) < 0
for all large |u|, and |g(u, p)| ≤ c(1 + |p|γ) with c > 0, 0 ≤ γ < 2, uniformly for u in
compact intervals, and f : R × S1 × R × R → R is also C2 and bounded. To take
x ∈ S1 here is equivalent to consider periodic boundary conditions

u(t, 0) = u(t, 1) , ux(t, 0) = ux(t, 1) .

Under these conditions equation (32) generates an evolution process on the frac-
tional power space B = Xα = H2α(S1), 3/4 < α < 1. Moreover, by the results
in [7] for small values of ε > 0 the evolution process Sε(·, ·) has a pullback at-
tractor {Aε(t), t ∈ R}. The unperturbed differential equation (32)ε=0 has been
extensively considered in the literature and is well understood, see [1, 19, 17] and
the references therein. In general, the semiflow Tg(·) generated by the autonomous
differential equation (32)ε=0 has equilibrium solutions and also periodic orbits. Fur-
thermore all the equilibria and periodic orbits are hyperbolic generically in g, see
[28]. Therefore, we assume that g is such that all the equilibria and periodic orbits
of Tg(·) are hyperbolic. Then, by the automatic transversality of all the unstable
and local stable manifolds of its critical elements, Tg(·) is a Morse-Smale semiflow of
transformations of B, (see [17], [19] and [29] for these specific boundary conditions
and also the pioneering work [26]). In fact, in the class of problems (32)ε=0 the
automatic transversality between stable and unstable manifolds of periodic orbits
and other critical elements, [17, 19], also holds for pairs of equilibria due to the
nonexistence of heteroclinic connections between homoindexed equilibria, [29, 19].
So the autonomous evolution process S0(t, τ) = Tg(t − τ) is Morse-Smale on B by
Theorem 9.2 and the nonautonomous evolution process Sε(·, ·), for sufficiently small
ε > 0, is also Morse-Smale on B by Theorem 9.3.

10.3. Asymptotically autonomous Morse-Smale evolution process. Next,
we consider the case of asymptotically autonomous evolution processes. Let S(·, ·)
denote an evolution process on B generated by the differential equation
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ż = Lz + g(z) + f(t, z) , (33)

with L and g satisfying the same conditions of Theorem 9.3, but with nonau-
tonomous term f ∈ Cb(R, C1(B, X)) satisfying

lim
t→+∞

sup
z∈B

(
‖f(t, z)‖X + ‖fz(t, z)‖L(B,X)

)
= 0 .

Then S(·, ·) is asymptotically autonomous and its limiting behavior should approach
the autonomous evolution process Sω(·, ·) generated by the differential equation

ż = Lz + g(z) . (34)

If we replace the time dependence in (33) by a smooth monotone function R 3 t 7→
hη(t) ∈ R satisfying

hη(t) =

{
η, if t ≤ η
t, if t > η + 1

we obtain an asymptotically autonomous evolution process which is autonomous
in the past (for t ≤ η). Let Sη(·, ·) denote the evolution process generated by the
differential equation

ż = Lz + g(z) + f(hη(t), z) . (35)

Then f ∈ Cε(R, C1(B, X)) with ε = ε(η) → 0 as η → +∞. Hence, if the au-
tonomous process Sω(·, ·) is Morse-Smale on B, then for large values of η the asymp-
totically autonomous evolution process Sη(·, ·) is also Morse-Smale on B by Theo-
rem 9.3. This holds even if S(·, ·) is not Morse-Smale, exhibiting different behaviors
in the past and in the future.
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