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Highlights
Selective silencing of 35S rRNA genes
(35S rDNA) via nucleolar dominance
(ND) is accompanied by epigenetic
repatterning, including extensive DNA
methylation of promoter sequences
through RNA-directed DNA methylation
and histone deacetylation.

Although ND was first observed nearly a
century ago, the molecular mechanisms
behind when and how ancestral rDNA
sets are chosen for silencing are still
Nucleolar dominance (ND) is selective epigenetic silencing of 35-48S rDNA loci.
In allopolyploids, it is frequently manifested at the cytogenetic level by the
inactivation of nucleolar organiser region(s) (NORs) inherited from one or several
evolutionary ancestors. Grasses are ecologically and economically one of
the most important land plant groups, which have frequently evolved through
hybridisation and polyploidisation events. Here we review common and unique
features of ND phenomena in this monocot family from cytogenetic, molecular,
and genomic perspectives. We highlight recent advances achieved by using
an allotetraploid model grass, Brachypodium hybridum, where ND commonly
occurs at a population level, and we cover modern genomic approaches that
decipher structural features of core arrays of NORs.
unknown.

Recent advances in technologies
such as single-molecule real-time
and nanopore sequencing and opti-
cal mapping allow long (>10 kb) DNA
segments, including whole rDNA
units, to be analysed, which improves
characterisation of 35S rDNA loci in
plants.

Brachypodium hybridum is a unique
model species for studying the mecha-
nisms of ND in grasses due to its small
nuclear genome size and the presence
of only one 35S rDNA locus per
subgenome.
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Nucleolar dominance: 90 years ago to present
A nucleolus (see Glossary) is formed in the vicinity of the chromosomal locus whose tandemly
repeated 35-48S rDNA is transcribed (Figure 1) [1,2]. 35-48S rRNA genes encode 18S, 5.8S,
and 25-28S rRNA molecules, which constitute essential components of ribosomes and which
are vital for the viability of the cell. In many allopolyploids and interspecific hybrids, nucleoli
are formed through the transcription and processing of 35-48S rRNA genes from one of two
or more evolutionary ancestors. This phenomenon of selective repression, called Nucleolar
dominance (ND), is a manifestation of subgenome dominance in these organisms (Figure 1)
[3–10] and was observed in the representatives of both plant and animal subkingdoms [1].

ND was first demonstrated in the first half of the past century by Navashin [11], who observed the
loss of secondary constrictions on chromosomes that had been inherited from one particular
parent in several hybrids of Crepis (Asteraceae). Interestingly, in backcrosses of the hybrids that
exhibit this phenomenon to their underdominant parents, secondary constrictions were restored,
showing that ND is a reversible process [11]. On the basis of Navashin’s results and studies on
maize (Zea mays) translocation lines, McClintock [12] suggested that particular species differ in
their ability to form a nucleolus, implying that a hierarchy of ND exists. For example, if species A
dominates species B, and species B is dominant to species C, then species A should always be
dominant over species C. Later molecular studies revealed that ND results from expressing only
one parental set of rRNA genes in Xenopus (frog) hybrids [13]. Transcriptionally active 35S rRNA
genes within secondary constrictions are responsible for nucleolus assembly. By contrast, their
inactive counterparts are located in heterochromatic knobs [14].

Since these pioneering studies, much attention has been given to determine whether ND is com-
mon or exceptional in plant hybrids and allopolyploids across different genera. Another aim was
to discover the molecular mechanisms of ND to answer the question how parental 35S rDNA loci
are selected for silencing. Although plant and animal hybrids have been studied for a considerable
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Figure 1. Schematic of ribosome subunit biogenesis with a special emphasis on rDNA contribution and
nucleolar dominance (ND). Top left panel: Interphase nucleus of a typical allotetraploid species (subgenome
composition AABB) exhibiting ND. Only the 35S rDNA loci from the A subgenome (homologs are marked as A′ and A″)
can form a nucleolus (Nu), whereas those of the B-subgenome (marked as B′ and B″) are silenced via ND and located at
the nuclear periphery. Right panel: In the nucleolus, RNA polymerase I (Pol I), together with a set of transcription factors,
transcribes hundreds of A-subgenome 35S rRNA genes to generate 35S pre-rRNA, which is further cotranscriptionally
processed to form mature 18S, 5.8S, and 25S rRNAs. The processing involves multiple endonucleolytic and
exonucleolytic cleavages and the modification of rRNA residues (mainly by 2′-O-ribose-methylation and pseudouridylation;
reviewed in [91]). The assembly of the ribosomal subunits occurs cotranscriptionally and requires the so-called ribosome
biogenesis factors (RBFs). The nascent 35S pre-RNAs interact with RBFs that are necessary for pre-rRNA processing and
ribosomal subunit assembly (reviewed in [92]). The 18S rRNAs assemble with ribosomal proteins of the small subunit
(RPSs) to form 40S ribosome subunits. By contrast, 5.8S and 25S assemble with ribosomal proteins of the large subunit
(RPLs) and 5S rRNA (transcribed outside a nucleolus, processed and imported into the nucleolus; bottom left panel) to
form 60S ribosome subunits. The figure was created with BioRender.com. Abbreviations: ETS, external transcribed
spacer; IGS, intergenic spacer; ITS, internal transcribed spacer; NTS, nontranscribed spacer.
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time, little is known about the exact mechanism by which ND is established and maintained.
Here, we review the current knowledge on ND in plants, focusing primarily on the economically
and ecologically important grass family. We highlight recent methodological advances that
enable studies of individual 35S rDNA loci in complex genomes of allopolyploids. We also
outline the importance of a new flagship allopolyploid model grass, Brachypodium hybridum
(2n = 30, DDSS), which emerges as a model for studying ND in grasses. Improving our under-
standing of ND is a key to decipher polyploidy, one of the major forces governing seed plant
evolution [6,15,16].
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Glossary
35-48S rDNA: also known as 35-48S
rRNA genes, encodes rRNAs, a vital
component of ribosomes. It is essential
for the metabolism of every cell and
belongs to the so-called group of
housekeeping genes. 35-48S rDNA is
organised as chromosomal locus
consisting of long arrays of tandemly
repeated units. Each unit comprises
18S, 5.8S, and 25S (or 28S in
mammals) rRNA genes, two internal
transcribed spacers (ITS1 and ITS2),
and an intergenic spacer (IGS) that
contains a nontranscribed spacer (NTS)
and an external transcribed spacer (ETS;
Figure 1). A single rDNA transcription
unit is known as 35S-45S rDNA in plants
(depending on the size of 5′-ETS), 48S
rDNA in mammals, and 35S rDNA in
yeast. The genic regions are highly
conserved even between distantly
related species, whereas the intergenic
regions are highly variable and lend
themselves frequently therefore to
phylogenetic studies.
Allopolyploid: an individual with at least
two complete disomic chromosome
sets (subgenomes) derived from
hybridisation between different
taxonomic species followed by the
doubling of their chromosome number in
order to restore sexual fertility
(e.g., AA × BB→ AB→ AABB).
Fluorescence in situ hybridisation
(FISH): a cytomolecular method to
visualise a specific DNA sequence on a
substrate (e.g., mitotic or meiotic
chromosomes, interphase nuclei,
extended chromatin fibres). FISH relies
on kinetically controlled annealing of
fluorescent or immunolabelled DNA
probes with complementary substrates
in a cytological preparation.
Genomic in situ hybridisation
(GISH): a modification of FISH using
whole genomic DNA probes rather than
specific DNA sequences.
Long-read sequencing: also known
as third-generation sequencing, a
modern DNA sequencing approach that
helps to close gaps in a genome, with
particular utility in mapping repetitive
sequences. Depending on the
technology used, read length may vary
from tens of kilobases (single-molecule
real-time sequencing) to hundreds of
kilobases (nanopore sequencing).
Nucleolar dominance (ND): a
common epigenetic phenomenon
describing the selective transcription of
the 35S rRNA genes of one or more of
A brief overview of the early cytological observations of ND in cereals
ND is widespread among grasses, such as allohexaploid wheat [17], triticale [18], barley [19], oats
and oatlike grasses [20,21], maize [22], and many others (Table 1). For many years, its occur-
rence was determined on the basis of cytological observations, such as the presence or absence
of secondary constrictions and the number and size of nucleoli per nucleus [23–25]. The absence
of secondary constrictions on mitotic metaphase chromosomes implied that specific regulatory
proteins and their complexes did not associate with inactive rRNA genes. The corollary was
that silenced rRNA genes reside in a different chromatin configuration from their active counter-
parts [17]. This assumption has been tested directly by assessing the activity of ancestral rDNA
sets using silver staining that highlights NOR regions [26]. Some proteins remain associated
with NORs during mitosis; thus, only 35S rDNA loci that were transcribed during the previous
interphase are stained by silver [27]. Numerous studies have used silver staining to examine
rDNA activity in grass hybrids and allopolyploids, particularly those of the Triticeae tribe. For
example, in the artificial intergeneric triticale [18,28], derived from a cross between wheat
(tetra- or hexaploid; subgenome composition AABB and AABBDD, respectively) and rye
(Secale cereale; RR), it was shown that only the 35S rDNA loci of the wheat progenitors were
expressed, with the selective silencing of the loci of the rye subgenome [18,29]. Triticale contain-
ing two (ABRR) or three (ABRRR) rye genomes did not change the inactive transcriptional state of
the 35S rRNA genes of the rye subgenomes. This indicates that, at least in triticale [29] and wheat
[30], ND is not a simple dosage-dependent phenomenon, because it may be influenced by the
unit structure and chromosome features. In wheat-rye hybrids, in which the 35S rDNA derived
from rye is also suppressed, underdominant rRNA genes are highly condensed and less
dispersed in interphase nuclei than the nucleoli-associated wheat loci, thereby showing a
distinctly different organisation of active compared with inactive rRNA gene loci [28]. Further
studies on wheat-rye hybrids and hexaploid triticale revealed transcriptional reactivation and
decondensation of the rDNA of the R-subgenome after treatment with the DNA hypomethylating
agent, 5-azacytidine. This suggests that epigenetic mechanismsmay be important in maintaining
ND in grasses [9,31].

Cytological analyses still have much to offer in the study of ND. The use of the silver staining,
together with the flagship cytomolecular method, fluorescence in situ hybridisation (FISH),
and its modification, genomic in situ hybridisation (GISH), not only discriminate between
active and inactive 35S rDNA loci but also identify the subgenome origin of particular loci, also
in interphase nuclei [32–34].

ND in monocots versus dicots
Even though ND is prevalent among grasses, most of the information about this phenomenon
has come from research on dicot plants from various genera, such as Arabidopsis [5,35],
Brassica [3,36], Nicotiana [37], Solanum [38], Tragopogon [39,40], and Anemone [41]. A holistic
understanding of molecular mechanisms that shape ND, however, requires verification as to
whether they are the same or not in dicot and monocot representatives.

In both groups of angiosperms, ND is driven and maintained through epigenetic mechanisms
[5,7–9,42]. Early experiments using cytosine methyltransferase (5-azacytidine; 5-azadeoxycytidine)
and histone deacetylase (sodium butyrate; trichostatin A) inhibitors reactivated underdominant
35S rRNA genes in some dicots [5,10,43] and monocots [9,31,44]. Indeed, the differential
DNA methylation status of active and silenced ancestral rDNA sets has been documented in
many allopolyploids, including the allotetraploid grass B. hybridum, in which the silenced 35S
rDNA loci of the S-subgenome have significantly higher DNA methylation levels than those of the
D-subgenome (Figure 2) [45]. The underdominant rRNA genes of rapeseed (dicot allotetraploid)
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the constituent subgenomes in
interspecific hybrids and allopolyploids.
Only transcriptionally active rRNA genes
form a nucleolus, hence the name given
for this phenomenon.
Nucleolus: a nuclear domain whose
primary function is the biogenesis of
ribosomal subunits. This process
involves the transcription of 35S rRNA
genes by RNA polymerase I (Pol I),
followed by primary 35S rRNA
(pre-rRNA) transcript processing. Small
and large ribosomal subunits are
assembled from individual, mature rRNA
molecules together with ribosomal
proteins.
Optical map: a physical map
visualising hundreds to thousands of
kilobase stretches of DNA in a
nanochannel array using
short-sequence motifs/labels.
RNA polymerase I (PolI): a highly
specific eukaryotic nuclear
DNA-dependent RNA polymerase
catalysing transcription of 35-48S rRNA
genes in the nucleolus. RNA polymerase I
is a complex enzyme made up of 12 or
more subunits.
Secondary constriction: a
chromosomal region that morphologically
marks the site of 35S rRNA genes
expressed during the previous
interphase. It can be visualised at the
microscopic level.
and bread wheat (monocot allohexaploid) are extensively methylated within the promoters
recognised by RNA polymerase I (Pol I) [7,46]. Arabidopsis suecica is a dicot allotetraploid in
which the rRNA genes derived from Arabidopsis arenosa are dominant over those from the
Arabidopsis thaliana-like subgenome. Reverse genetic approaches in this species identified the
proteins that are involved in rRNA gene silencing. These include histone deacetylase 6 (HDA6),
domains rearranged methyltransferase 2 (DRM2), methylcytosine binding domain protein 6
(MBD6), histone H3K9 methyltransferase (SUVR4), RNA-dependent RNA polymerase 2 (RDR2),
and dicer-like 3 protein (DCL3) [4,5,47,48]. These proteins are involved in the RNA-directed DNA
methylation (RdDM) pathway, where siRNAs of 24 nt in length elicit the transcriptional silencing
of a gene by directing repressive epigenetic modifications such as DNA and histone methylation
to the genomic regions with which they share homology [49,50]. Interestingly, preferential silencing
of A. thaliana-derived rDNA of A. suecica is correlated with both the occurrence of 24-nt-long
siRNAs that match the intergenic spacer (IGS) region and rRNA gene promoter and the de novo
cytosine methylation by DRM2, implicating the involvement of the RdDM pathway in ND [4,47].

Because the inactive state of underdominant rDNA loci is maintained via repressive epigenetic
mechanisms, ND in both groups of angiosperms seems to be a fully reversible, developmentally
regulated phenomenon, which has to be restored in each generation. One example of this is the
progressive inactivation of A. thaliana-derived rRNA genes during early postembryonic develop-
ment of A. suecica [51]. Similar ND establishment was also observed in rapeseed, in which both
ancestral 35S rDNA sets are active in 2–3-day-old seedlings [52], but stable ND towards the
Brassica rapa-derived rRNA genes in the leaves of mature plants exists [3,36]. Moreover, at
least in some rapeseed genotypes [3] and artificial Solanum allopolyploids [38], a transcriptional
reactivation of the underdominant rRNA genes was observed after the transition from the
vegetative to the generative phase. The establishment of ND in monocots seems to occur early
in development. For example, rDNA loci of rye origin in wheat-rye hybrids are repressed as
early as 4–5 days after fertilisation in both embryo and endosperm [53].

Resynthesised forms of allopolyploids are often used in studies of the genetic and epigenetic
dynamics of rDNA loci of the first generations following hybridisation. Analyses of the
resynthesised rapeseed revealed that the silencing of the Brassica oleracea-originated rRNA
genes may be initiated as early as in the F1 hybrids and is correlated with the progressive
hypermethylation of the underdominant C-subgenome rRNA genes [46]. The rDNA expression
patterns in the resynthesised rapeseed mirrored those of its natural forms [36]. Thus, at least in
the case of Brassica allopolyploids, it seems that interspecific hybridisation itself is sufficient
to induce epigenetic repatterning of the C-subgenome rDNA set and, consequently, triggers
uniparental silencing [46]. In newly formed A. suecica F1 hybrids, the silencing of A. thaliana-
originated rDNA was variable, with two generations needed to establish stable ND in some
lines [43]. By contrast, in resynthesised wheat, allopolyploidisation constitutes a critical step for
the silencing trigger [7]. As in Arabidopsis, in wheat, the repression of the A-subgenome rDNA
is accompanied by increased CHG and CHH (H = A, C, T) DNA methylation on rRNA gene
promoters, followed by recruitment of repressive histone modifications, that is, dimethylation of
lysine 9 of histone H3 (H3K9me2) and trimethylation of lysine 27 of histone H3 (H3K27me3) [7].
In summary, ND establishment may be triggered by interspecies hybridisation only or may require
subsequent whole-genome duplication followed by meiotic cycles.

ND is one specific aspect of rRNA gene dosage control [54]. It is an open question whether the
repressive mechanisms underlying rRNA gene dosage control are the same or different in diploid
and allopolyploid organisms. On the basis of studies in genera differing in ploidy levels
[8,10,38,45,47,55], it is likely that the maintenance of ND relies mostly on DNA methylation and
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Table 1. Occurrence of nucleolar dominance in selected grass representatives

Taxon Short characteristics Dominant Underdominant Method Refs

Aegilops cylindrica Tetraploid CcCcDcDc

(Aegilops caudata × Aegilops tauschii)
CcCc DcDc Silver staining, FISH [33]

Avena barbata Tetraploid AABB AA BB Silver staining, FISH [20,93]

Brachiaria decumbens Tetraploid cv. Basilisk, B1B1B2B2 Unknown Unknown Silver staining, FISH [94,95]

Brachypodium
hybridum

Tetraploid DDSS
(B. distachyon × B. stacei)

DD SS Sequential silver
staining and FISH

[34,45,88]

Elymus tetraploids Tetraploid SSHH SS HH Silver staining [96]

Hordeum vulgare Translocation lines T505, T506, T248, T571,
and T2052 combining NOR6 and NOR7 on one
chromosome

NOR6 NOR7 Silver staining, FISH [19,64]

Lolium multiflorum cv. Barjumbo (4x) and cv. ABARP (3x) Unknown Unknown Silver staining, FISH [97]

Triticale cv. Cachirulo, Senatore Capelli, and Bidi 17
(hexaploid AABBRR)

AABB RR Silver staining [18,98]

Triticum aestivum Hexaploid cv. Chinese Spring (AABBDD) 1B and 6B 5D and 1A Silver staining
RNA-seq, RT-qPCR

[25,29,30,56]

T. aestivum × Secale
cereale

cv. Chinese Spring × cv. Centeio do Alto
(F1 hybrid, ABDR)

1B and 6B 1R Silver staining [9]

Triticum spelta Hexaploid AABBDD 1B and 6B 5D and 1A Silver staining, ISH [29,99]

Triticum turgidum
durum

Tetraploid AABB. cv. Enano de Andújar, cv.
Nordum, and cv. Calvin

1B and 6B 1A Silver staining, FISH,
ISH, N-banding

[18,29,99,100]

Z. mays inbred line Intraspecific F1 hybrid Sx19 (♀ B73 × ♂Mo17) B73-derived rDNA Mo17- derived
rDNA

Silver staining,
RNA slot blot

[22,101]

Z. mays inbred line Intraspecific F1 hybrid Sx19 (♀Mo17 × ♂ B73) Mo17- derived
rDNA

B73- derived
rDNA

Silver staining,
RNA slot blot

[22,101]
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histone modifications. Thus, the repressive epigenetic marks maintaining ND are conserved and
somewhat similar between diploids and allopolyploids, in dicots and monocots. However, the
enzymatic machinery involved in the 35S rRNA gene dosage control may differ between diploid
and allopolyploid plants, as shown in A. thaliana and A. suecica, where distinct H3K9
methyltransferases are required for rDNA variant-specific silencing and ND, respectively [48].

The mechanisms determining which ancestral rDNA set is destined for silencing remain elusive.
Because ND seems to occur independently of paternal or maternal effects [3,11] and is established
either during embryogenesis [53] or early after embryogenesis [51], ancestral rDNA imprinting in the
gametes does not appear to be involved. In both dicots and monocots, it is usually the same
parental rDNA set chosen for inactivation, implying that ND is not random yet may be dosage
dependent, as was shown in Arabidopsis allopolyploids [43]. Also, there seems to be no simple
relationship between the number of rDNA units within a locus and the direction of ND, because
NORs with fewer genes can be dominant over those with more rRNA genes, as was shown in
bread wheat [30,56] and Brassica allopolyploids [3]. Certainly, loci with a low number of genes
are usually inactive in plants with multiple 35S rDNA sites [36,57], suggesting that there might be
a minimum number of functional genes constituting a dominant NOR.

Several hypotheses have been proposed to explain molecular mechanisms that shape ND. One
of them posits that the rapid evolution of rRNA gene promoters should be accompanied by
coevolution of transcription factors (TFs) that recognise the promoter and interact with Pol I
[58,59]. Thus, the lack of species-specific TFs in the hybrid or allopolyploid should result in ND
enforcement. Indeed, this hypothesis appears accurate for distantly related species that cannot
Trends in Plant Science, Month 2023, Vol. xx, No. xx 5
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Figure 2. DNA methylation status and chromosomal organisation of 35S rDNA loci in Brachypodium
hybridum. (A) 5-Methylcytosine immunopatterns (green). (B) Fluorescence in situ hybridisation with the 25S rDNA probe
(red) in the chromosome complement shown on (A). Bar, 5 μm. (C) 5-Methylcytosine foci distribution along the longitudinal
axes of chromosomes D′ (the top profile) and S′ (the bottom profile), which are surrounded by white rectangles on (A,B).
The length of the chromosomes in micrometres is shown on the x-axis. Chromosomes are oriented from their long arm to
the short. The fluorescence intensity on the y-axis is presented in arbitrary units. The blue curves denote the fluorescence
intensity of the counterstain [4′,6-diamidino-2-phenylindole (DAPI); blue], whereas the green curves indicate the distribution
of DNA methylation foci. The localisation of 35S rDNA loci is presented below the profiles on the chromosome diagrams.
(D) Schematic representation of D- and S-subgenome 35S rDNA loci, which are characterised by differential DNAmethylation
levels in relation to their activity. Only rDNA loci from the D-subgenome are transcriptionally active. Based on [45]. The figure
was created with BioRender.com.
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be crossed. However, it fails to explain ND in plant hybrids in which the TFs of one progenitor
could efficiently interact with the promoter of the second parental species [60]. Another hypoth-
esis is based on the structural features of IGSs, whose repetitive regions are the most rapidly
evolving of rDNA units. It proposes that the 35S rDNA derived from the progenitor with longer
IGSs containing more subrepeats upstream of the transcription initiation site is dominant over
those derived from the progenitor(s) with shorter IGSs [61]. Such a correlation was first found
in Xenopus frog hybrids, where upstream subrepeats act as transcription enhancers (so-called
enhancer imbalance hypothesis) [62,63]. However, 35S rDNA sets with longer IGSs in Brassica,
Arabidopsis, and maize were underdominant [3,22,43], so this hypothesis needs further scrutiny
in plants.
6 Trends in Plant Science, Month 2023, Vol. xx, No. xx
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Interestingly, some studies on the behaviour of rDNA loci in diploid plants suggest a chromosomal
role in the context of ND. For example, rRNA gene activity may depend on the position on the
chromosome in a barley translocation line, in which both 35S rDNA loci are present on the opposite
arms of one chromosome [64]. In wild-type barley, 35S rDNA loci are on different chromosomes
and are transcriptionally active. In the translocation line, however, one locus is repressed, implying
interference between the two loci that impacts rRNA gene expression. A similar conclusion was
reached in A. thaliana mutant deficient for histone H3 lysine 27 monomethylase activity, where
normally silent rDNA units from NOR2 are translocated to NOR4 [65]. At the new chromosomal
position, the NOR2 rRNA genes are activated, revealing a potential role of the neighbouring
pericentromeric sequences in the selective silencing of rRNA genes in NOR2. Handa et al. [66]
suggested that the highly methylated, transposon-rich regions adjacent to the major wheat
NORs on chromosomes 1B and 6B not only may regulate the expression of neighbouring NORs
but also may influence minor unlinked rDNA loci. Thus, the impact of the chromosomal position
still needs to be further examined in both dicot and monocot allopolyploid systems to explain
ND. Despite some reports demonstrating the effect of supernumerary B chromosomes [67] and
intergenomic non-NOR chromosome substitutions [68] on 35S rDNA expression patterns in
hybrids and allopolyploids, a mechanistic explanation of chromosome effects on ND remains
elusive.

Modern methodological approaches provide new insights into 35S rDNA
genomic organisation, epigenetic modification, and ND in plants
Studies on the molecular basis of ND for many years were limited through a lack of methodolog-
ical approaches enabling more detailed scrutiny of the sequence organisation and transcriptional
activity of rRNA genes from individual loci. Repetitive rDNA arrays spanning millions of base pairs
were refractory to mapping and assembling, leading to significant gaps in sequenced plant
genomes. The onset of the long-read sequencing technologies with ultralong reads, such as
nanopore sequencing and single-molecule real-time sequencing, has opened a new chapter in
studies of tandem repeats, including 35S rDNA, in both the sequence and DNA methylation con-
texts [69–71]. Recently, a combination of long- and short-read sequencing of bacterial artificial
chromosomes containing rDNA has assessed higher-order organisation of the NOR2 locus of
A. thaliana [72]. This study revealed not only heterogeneity of rDNA units but also, and even
more interestingly, tissue-specific patterns of their expression. These observations are consistent
with the existence of tissue-specific ribosome populations, which are characterised by different
rRNA variants, an exciting new aspect to be considered in future ND studies. Considering that
previous findings [55,73] on A. thaliana clearly showed significant differences in the expression
and copy number of rDNA clusters among different accessions and the regulation of rRNA
gene expression via complex epistatic and allelic interactions between rDNA cluster haplotypes,
future studies should address ND at the population level in order to characterise intraspecific
variability as well. Burns et al. [35] showed wide variation in both 35S rDNA cluster size and
expression among different accessions of A. suecica, adding support to the notion that ND
may be partly explained by variation in its constituent ancestral genomes.

Another intriguing question is whether a significant reduction in dominant rDNA copy number in
allopolyploid species may change the direction of ND. In the recently emerged allotetraploid,
Tragopogon mirus (DDPP), 35S rDNA of the D-subgenome, accounting for ~25% of the total
rDNA in this species, is dominant over the P-subgenome [39]. Individuals of T. mirus carrying
a homozygous macrodeletion, which reduced the number of D-subgenome units to ~4%
of total rDNA, had no ND in flowers, roots, and calli but not in leaves. Thus, repressed rDNA
homoeologues can be activated to alleviate the mutational damage [39]. Also, a significant
decrease in the 35S rDNA copy number in diploid plants may affect selective variant-specific
Trends in Plant Science, Month 2023, Vol. xx, No. xx 7
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silencing [74–76]. For example, in A. thaliana mutant deficient for the main subunits of chromatin
assembly factor 1 (CAF1): FACIATA 1 (FAS1) and FAS2, the number of rRNA genes was
decreased to ~40% and ~10–15% of the original number in the wild type by the second and
fifth generations of plants, respectively [74]. The transcriptionally active rDNA variants located in
the nucleolus were preferentially lost in mutants, and therefore the inactive copies (including the
typically silent variant 1) were activated [76]. Except for the late (fifth to ninth) mutant generations,
the fasmutants maintained levels of rRNA transcripts similar to those of the wild-type plants. More
recent studies on A. thaliana employed Cas9-mediated genome editing to decrease the 35S
rDNA copy number by up to 93% [77]. The mutants possess as few as ~25–30 rDNA copies
per NOR (~50–60 copies/genome), which was still sufficient to sustain their viability, although
dramatic changes in their transcriptomes were observed. These studies supported the previous
notion that plants harbour more rDNA copies than are needed for their developmental programs,
a redundancy that is difficult to explain at present. Also, the developmentally silenced NOR2 in
wild-type A. thaliana accessions [65,78] becomes activated in lines with decreased rDNA copy
number and is accompanied by loss of the heterochromatic mark H3K9me2 [77]. There is no
doubt that CRISPR-Cas-mediated targeted mutagenesis to study rRNA gene dosage promises
new possibilities for understanding ND in more complex allopolyploid genomes.

Differentiation between individual rDNA loci in allopolyploids with ND is a challenge worthy of
mention, especially in species where there is more than one rDNA locus per subgenome.
Bread wheat (Triticum aestivum; AABBDD) is a good example, with its large and complex
genome of over 16.5 Gbp [79] and at least four 35S rDNA loci distributed on chromosomes
1A, 1B, 6B, and 5D. Recently, combining optical maps of flow-sorted chromosomes with
short-read sequencing data has enabled the reconstruction of individual rDNA loci in wheat for
the first time [56]. In the Chinese Spring variety, major and minor loci from the B-subgenome
and the D-subgenome, respectively, have high intra-array homogeneity. By contrast, the A-
subgenome locus has an irregular structure containing incomplete units, indicating that
this locus is in a phase of disintegration and pseudogenisation. DNA methylation (bisulphite
sequencing) and expression (RNA-seq) analyses have been used to investigate the epigenetic
status of these wheat loci. Such a multiomic approach revealed various mechanisms of rRNA
dosage control, such as stable silencing of the pseudogenised A-subgenome locus, complete si-
lencing of the minor D-subgenome locus, and the developmental regulation of the 6B locus. The
locus on the 1B chromosome is stably expressed throughout development and contributes most
of the 35S rRNA transcripts [56].

B. hybridum as a model in ND studies in grasses
Functional studies of ND in large complex cereal genomes may be difficult to interpret due to
epistatic interactions of numerous rDNA loci. It was therefore desirable to find a more tractable
model. One of the most promising current candidates for this role is a small-genome annual
allotetraploid grass, B. hybridum (~0.630 pg/1C) (e.g., [80–82]). This species is closely related to
the economically important temperate cereals, such as bread wheat, rye, barley, and oat [83].
Moreover, it is the only polyploid within the Brachypodium genus, whose evolutionary ancestors
(Brachypodium distachyon, 2n = 10; DD and Brachypodium stacei, 2n = 20; SS) have been
unambiguously identified [83–85]. The durable stasis of the subgenomes of B. hybridum has
been demonstrated using both genomic [86] and cytomolecular [87] approaches. However, 35S
rDNA in this species does not seem to follow this rule and appears to be a more dynamic part of
the B. hybridum genome [32,80]. In 2008, ND favouring the D-subgenome rDNA loci was
observed for the first time in root-tip cells of several B. hybridum genotypes [34]. The difference
in chromosomal position of the two loci, together with the inheritance of only one rDNA locus
from each progenitor, is a handy feature for studying ND in this allotetraploid, because these
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features significantly simplify cytogenetic analyses. As in other allopolyploids that exhibit ND, the
underdominant S-subgenome 35S rDNA loci ofB. hybridum exhibit high levels of repressive epige-
netic modifications, that is, methylation of cytosine residues (Figure 2) and H3K9me2 [45]. Hence,
ND in this species has an epigenetic origin. Interestingly, the developmental regulation of ND was
shown to be dependent on a particularB. hybridum genotype. Whilst ND was present in all tissues
studied so far in the ABR113 genotype, including immature and imbibed embryos, primary and
adventitious roots, leaves, spikes, and meiocytes [81,88], the 3-7-2 genotype reactivated the
S-subgenome loci in root tissue only (Figure 3) [81]. ND is already detectable in immature embryos
[88] and during the early postembryonic development of B. hybridum [34,80,81]. Similarly, a com-
plete suppression of the D-subgenome locus in wheat (Chinese Spring variety) occurs in young
embryos and cotyledons [56]. These studies indicate that the establishment of ND in monocots
(specifically in grasses) may occur earlier in development than in the dicots [51,52].

It has been shown that the underdominant S-subgenome loci in B. hybridum are gradually
eliminated during evolution [80], as in rapeseed [36]. The contribution of the underdominant loci
to the total rDNA in this grass varied between genotypes from ~7% up to 39% [80,81], whereas
the relationship between copy number and ND is currently unclear. This phenomenon is probably
correlated with the polyphyletic origin of B. hybridum [83,89]. The most recent dating analysis
TrendsTrends inin PlantPlant ScienceScience

Figure 3. Genotype-specific developmental regulation of nucleolar dominance in Brachypodium hybridum. Based on [81,88]. The figure was created with
BioRender.com.
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Outstanding questions
Are the molecular mechanisms that
shape ND universal among monocot
and dicot allopolyploids and hybrids?

Is a tissue-specific expression of an-
cestral rRNA genes in allopolyploids
linked with the needs of the cell for a
particular ribosome subpopulation?

Is there any correlation between ND in
plants and their adaptation to environ-
mental stresses?

Is there a relationship between the
position of the NOR locus along the
chromosome and its predisposition to
silencing in hybrids and allopolyploids?
shows that its different lineages arose from multiple crosses between the D- and S-subgenome
donors during the Quaternary period, ~1.4 and ~0.14 million years ago [86].

Due to its small and relatively simple genome, and a wide range of available genetic resources and
sequencing data (including whole-genome sequences for a range of accessions and two of its
putative evolutionary ancestors) [86,90], B. hybridum has the potential to become a flagship
model for ND studies in monocots or grasses as a whole.

Concluding remarks and future perspectives
Despite nearly a century of studies on ND in a variety of dicot and monocot allopolyploids and
hybrids, the factors determining which rDNA loci are chosen to be repressed and the biological
significance of this selective rDNA inactivation are still enigmatic. The advent of new sequencing
techniques offers a much closer look at the structure, epigenetic pattern, and expression of
individual rRNA gene loci, so far intractable. The increasing interest in B. hybridum as a model
representative of the Brachypodium genus, with its superlative combination of plant resources
and cutting-edge methods, bodes well for our gaining new insights into the mechanisms that
shape this intriguing phenomenon. This should improve our comprehension of allopolyploidy,
one of the major evolutionary forces in angiosperms (see Outstanding questions).
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