

das Szenario

Thema	Mechanik der Flüssigkeit / Schwebende Objekte
Länge	2:08
Hauptziele	Analysieren Sie die Eigenschaften von Flüssigkeiten und verstehen Sie
	das Prinzip von Archimedes.
Detaillierte Ziele	
Aufbau und Versuchsbeschreibung:	
1. Einführung	Beschreibung: Die Motivation für das Experiment wird die
	Untersuchung von Phänomenen aus der Natur sein - Körper, die auf
	der Oberfläche einer Flüssigkeit schwimmen, Körper, die tauchen.
2. Hauptthema	Beschreibung: Warum schwimmt ein Körper manchmal an der
	Oberfläche und manchmal sinkt er. Wovon hängt die Größe der
	Auftriebskraft ab? Untersuchung der Möglichkeit, dass Körper mit
	einer größeren Dichte als Wasser auf der Flüssigkeitsoberfläche
Teil 1	schwimmen.
	Werkzeuge: Wasser, Aquarium, Knete, Waage
(0:40)	werkzeuge: wasser, Aquanum, knete, waage
	Beschreibung: Wir modelliere eine Kugel aus Knetmasse und wiegen
Experiment 1 (0:44)	sie. In einem mit Wasser gefüllten Aquarium wird eine Kugel aus
	Knetmasse auf die Wasseroberfläche gelegt und losgelassen. Wir
	beobachten, dass die Kugel sinkt und auf den Boden fällt.
	, ,
	Anschließend modellieren wir aus der Kugel ein Boot, wiegen es und
Versuch 2 (1:03)	setzen es auf die Wasseroberfläche. Wir beobachten, dass das Boot
	auf der Wasseroberfläche schwimmt.
	Die Gewichte des Bootes und der Kugel sind gleich groß.
	Das Boot bleibt auf der Wasseroberfläche schwimmend, weil die
	Größe der verdrängten Flüssigkeit größer ist als im Fall der Kugel.
	Frager, Hängt die Cräße der Auftriehelreft einer Flüssiskeit von
	Fragen: Hängt die Größe der Auftriebskraft einer Flüssigkeit vom Körpergewicht ab? Wovon hängt es ab?
	Korpergewicht ab: Wovon hangt es ab:
	Schlussfolgerungen: Die Größe der Auftriebskraft hängt von der
	verdrängten Flüssigkeitsmenge ab.
3. Zusammenfassung,	Anwendung: Das archimedische Prinzip wird beim Segeln von Schiffen,
Bewertung und	U-Booten verwendet.
Anmerkungen	
	Beim Modellieren eines Bootes ist es notwendig, ein Boot mit
	möglichst großer Verdrängung zu modellieren.
	Stufe: Grundschule (ISCED 2 / 6., 8. Klasse)

