

das Szenario

uas szeriario	
Betreff (Feld/Titel)	Elektromagnetismus / Ruhmkorff - Spule
Länge des Films	1:52
Hauptziele	Betrieb des Transformators
Detaillierte Ziele	Darstellung des Funktionsprinzips der Ruhmkorff- Spule als mit
	Gleichstrom versorgter Hochspannungstransformator.
Aufbau und Beschreibung der Experimente	
1. Einführung	Beschreibung: Es wird die Funktionsweise einer Ruhmkorff - Spule
	vorgestellt, die die Erzeugung von Hochspannung mit hoher
	Änderungsfrequenz ermöglicht.
2. Hauptthema	Beschreibung: Anwendung der Maxwellschen Gesetze in einem
	Gleichstromtransformator.
Teil 1	
	Werkzeuge: Ruhmkorff- Spule, DC-Netzteil
	Beschreibung: Die Ruhmkorff-Spule besteht aus einem Transformator,
	dessen Primärwicklung eine viel geringere Windungszahl hat als die
	Sekundärwicklung, und einem Magneten, der den Stromfluss in der
	Wicklung unterbricht. Beide Wicklungen sind auf einem gemeinsamen
	offenen Eisenkern montiert. Dank des mit Gleichspannung
	verbundenen Magneten werden Änderungen der Stromstärke (und
	damit des elektrischen Feldes) um die Primärwicklung herum erzielt.
	Änderungen des elektrischen Feldes bewirken Änderungen des
	Magnetfeldes, die in der Sekundärwicklung Änderungen der
	elektrischen Feldstärke und des Ladungsflusses bewirken. Auf diese
	Weise wird in der Sekundärwicklung eine hohe Spannung (mehrere
	hunderttausend Volt) mit hoher Frequenz erzeugt. Die Änderungen
	des Magnetfelds im Transformatorenkern werden zum Betrieb der
	Lichtmaschine genutzt, die den Stromkreis zur Versorgung der
	Primärwicklung abwechselnd schließt und öffnet. Das abwechselnde
	Öffnen und Schließen des Stromkreises ermöglicht Änderungen der
	Stromstärke im Primärkreis, die notwendig sind, um ein magnetisches
	Wechselfeld zu erhalten, das nach den Maxwellschen Gesetzen
	notwendig ist, um ein elektrisches Wechselfeld (in der
	Sekundärwicklung) zu erzeugen.
	Fragen: Wie funktioniert ein klassischer Transformator? Erfüllt der
	klassische Transformator seine Aufgabe, wenn er mit Strom mit
	konstanter Spannung versorgt wird?
	Schlussfolgerungen: Ein elektrisches Wechselfeld ist erforderlich, um
	ein magnetisches Wechselfeld zu erzeugen und umgekehrt. Dies
	entspricht den Maxwellschen Gesetzen und wird für den Betrieb des
	Transformators und die Erzeugung elektromagnetischer Wellen
	genutzt.
	0

3. Zusammenfassung und Anmerkungen Während des Experiments können Sie auf die Funktionsweise des Magnetzünders achten.

Stufe: Sekundarschule