

The scenario

Subject	Electrostatic / Charge distribution on a sphere
Length	2:17
Main goals	To show that electric charge on a conductive material is not spread
	arbitrarily
Detailed goals	to show that the charge given to a conductor resides on its outer
	surface entirely
Structure and description of experiments:	
1. Introduction	Conductive materials can be easily charged by touch with a charged
	body but there is a special way that the charge given is distributed all
	over the conductive material.
2. Main subject	Charge distribution on a sphere
Experiments	1. We will try to charge a conducting sphere, giving it a charge from a
	rod to its outer surface. Now we check if the charge resides inside or
	outside the sphere. Neutral probe is put inside the can in contact
	with it and then it is brought to touch the electroscope - there is no
	charge on the probe, so there is no charge on the inner surface of the
	sphere. Now we touch the outside surface of the sphere and find out
	that the charge resides there.
	2. Now we remove charges from electroscope, probe and sphere and
	do the same experiment, but charging inner surface of the sphere.
	We check if the charge is inside the sphere and find out that there is
	still no charge, even if the sphere was charged there. Now we check if
	the charge is on the outer surface of the sphere - it is there, it has not
	disappeared.
3. Summary, evaluation and	Conclusion: charge given to a hollow and empty conductor always
remarks	resides on its outer surface
	Application: if we want to transfer all charge of a probe to an
	electroscope, we should use a small Faraday cap mounted on the top
	of it and put the probe inside. All the charge from the probe will
	escape towards the most outer surface.
	Level: primary school and secondary school