

The scenario

Subject (field/title)	Thermal properties of matter / Balloons in liquid nitrogen.
Length of movie	2:51
Main Goals	Changes in state and volume due to changes in temperature
Detailed Goals	The change in the volume of gas due to a change in its temperature.
Structure and description of the experiments	
1. Introduction	Explanation: Substances change their volume as a result of
	temperature changes, and so do gases.
2. Main topic	Description: The film presents a change in the volume of air enclosed
	in a balloon due to a change in its temperature.
Part 1	
	Tools: Two large beakers, placed one inside the other and thermally
	insulated from each other, liquid nitrogen, inflated balloons (so that
	their diameter is slightly smaller than the beaker used), wooden pliers.
	Description: Pour liquid nitrogen into the beaker. Use pliers for dipping
	the balloons into liquid nitrogen.
	It can be seen that the volume of air in the balloons decreases rapidly,
	and the rubber from which the balloon is made stiffens.
	Then, one by one, we pull the balloons out of the liquid nitrogen and
	observe the air volume in the balloons increasing again.
	Using transparent balloons, it is possible to observe the liquefied air
	inside the balloon (the boiling point of the air is about -191°C, which is
	slightly more than 4°C higher than the boiling point of liquid nitrogen,
	therefore observation of the liquefied air is only possible for a very
	short time after the balloon is pulled out of the liquid nitrogen).
	Questions: Does the air in such a cooled balloon have no volume? Why
	does the volume of a gas decrease as the temperature decreases and
	increase as the temperature increases?
	Conclusions: As a result of lowering the temperature, the gas volume
	decreases due to the decrease in the average kinetic energy of the gas
	particles and, thus, the decrease in the distance between the particles.
	When the gas temperature is reduced below the boiling point (i.e.
	below the liquefaction temperature), the gas molecules will be so close
	together that it will become a liquid.
	As the temperature of the gas starts to rise again, the molecules will
	start to increase their average kinetic energy and start to move apart,
	increasing the volume of the gas.
3. Summary and notes	Students should be reminded that cooling a substance means lowering
,	the average kinetic energy of the molecules that make up the
	substance. Similarly, with heating - it is an increase in the average
	kinetic energy of substance molecules.
	Level: primary school and high school
	1 1

