
Innovative Educational Technologies, Tools and Methods for E-learning
Scientific Editor Eugenia Smyrnova-Trybulska
“E-learning”, 12, Katowice–Cieszyn 2020, pp. 77–87
DOI: 10.34916/el.2020.12.07

CONNECTION BETWEEN ONTOUML
AND KNOWLEDGE REPRESENTATION MODEL

OF STUDENTS’ ACTIVITIES

David Buchtela1, Dana Vynikarová2
1Centre of Business Informatics

Faculty of Information Technology, Czech Technical University in Prague
Thakurova 9, 160 00 Prague 6, the Czech Republic

2Faculty of Economics and Management,
Czech University of Life Sciences Prague

Kamycka 129, 165 00 Prague 6, the Czech Republic
1david.buchtela@fit.cvut.cz, 2vynikarova@pef.czu.cz

ORCID 10000-0002-3564-9198, 20000-0001-8955-6002

Abstract: In every focused system, e.g. the Learning Management System (LMS)
Moodle, it is possible to select relevant entities (students, teachers, study resources,
assessment, test and other activities) and their relations (associations). A concep-
tual model in OntoUML is suitable for the entities representation. It is possible to
feel a knowledge decision process as a non-determinist finite automaton where en-
tity state transitions are inspected. A way of entity state transition (needed data and
conditions) is represented by guideline (procedural) knowledge representation mod-
el (like as GLIKREM). This paper aims to describe the possibilities of the concep-
tual model of the focused system designed in OntoUML and the Guideline Know-
ledge Representation Model (GLIKREM) for the Knowledge Representation Model
of Students’ Activities (KRMSA) based on knowledge and models of students’ activ-
ities in a Moodle system. This article describes a link between OntoUML as a con-
ceptual model and GLIKREM as a procedural knowledge model base with the aid of
the main components of both models.

Keywords: knowledge representation model, conceptual model, students’ activities,
decision process, OntoUML, Moodle.

INTRODUCTION
At present, the distance form of education is becoming more and more important. More
and more courses are being taught with the support of electronic systems (e.g. LMS

http://doi.org/10.34916/el.2020.12.07
https://creativecommons.org/licenses/by-sa/4.0/deed.pl
https://orcid.org/0000-0002-3564-9198
https://orcid.org/0000-0001-8955-6002

78 D. Buchtela, D. Vynikarová

Moodle) to provide students with new forms of electronic study materials, but also
to provide feedback in the form of attendance records, records of studied materials
and evaluation of individual projects and tests.
As the number of electronic courses grows, so it increases a suitable model require-
ment for representing the student¨s way through such a course. As the courses change,
so does the role of the teacher toward the course guide and consultant (Koķe, 2003).
A suitable model for the student’s way through the course is a valuable tool for the
teacher where the implementation of the model in the current LMS can automate
many activities.
One of the usable models is GLIKREM. This model is originally intended to repre-
sent medical guidelines (Peleška, 2005) but is suitable for representing any procedural
knowledge. The second suitable model is OntoUML, which is an extension of UML2
towards ontologies. OntoUML is primarily intended for (ontologically) a more ac-
curate description of the investigated domain, especially data types and relationships
between them. However, the resulting model in OntoUML is relatively easily con-
vertible to an implementation model (Rybola, 2016) and can thus be the cornerstone
of applications in the background of the primary LMS or applications of subject do-
main ontologies (Stoyanova-Doycheva, 2019). Knowledge Representation Model of
Students’ Activities described in this article uses elements of both mentioned models.

1. METHODS

1.1. OntoUML
OntoUML is an example of a conceptual modelling language which has been de-
signed to comply with the ontological distinctions and axiomatic theories put forth by
a theoretically well-grounded Foundational Ontology (Guizzardi, 2005). The concep-
tual model in OntoUML can then be transformed into various implementation mod-
els, typically relational or object (Rybola, 2017).
Types (classes) in OntoUML are based on the UML2 concept of classes as a descrip-
tion of common properties shared by certain entities (instances of the class). Attrib-
utes represent more or less intrinsic properties shared by instances of the class. Class
instances already contain specific attribute values.
Types can be in a specialisation or association relationship with each other. Specialisa-
tion defines the taxonomic structure of types in which all attributes of a class are in-
herited through a chain of specialisation. Classes sharing a common supertype can be
grouped in a so-called generalisation set. Two meta-attributes can be used a more robust
semantics to a generalisation set, namely, the complete and disjoint meta-attributes.

•	 Complete – If a generaliz = sation set is complete, the subtype exhausts the in-
stances of the common direct supertype. There is no instance of the supertype,
which is not an instance of one of the subtypes participating in the generalisation.

•	 Disjoint – If a generalisation set is disjoint if all the subtypes participating in
the generalisation are mutually exclusive. The intersection between any of these
subtypes is always empty.

Associations are generally n-ary relations (but mostly binary) those bind entities
together. Associations in OntoUML have the same meaning and notation as UML2.

79Connection between OntoUML and Knowledge Representation Model…

The association is specified by an (optional) role name and (mandatory) multiplici-
ties on both sides of the association. An arrow indicates the reading direction supple-
ments the association. Specific multiplicities are determined by conceptual analysis
of the problem domain.
Identity. Identity plays a crucial role in OntoUML. The principle of identity tells how
to identify an object (instance of some type) during its entire existence, regardless of
its (arbitrary) changes. It is, therefore, identity in terms of our perception, i.e. how
we can clearly distinguish two objects from each other. This concept is fundamen-
tally different from the usual identity in the object concept (object ID). Based on the
(ontological) identity, we then define two main categories of types:

•	 Sortal type – Sortal type provides categorisation and has its own (ontologic-
al) identity.

•	 Non-sortal type – Non-sortal types have not an (ontological) identity and there-
fore represent abstract concepts in terms of our perception. We use them to cat-
egorize sortal types according to various properties and relationships. In terms
of implementation, of course, each sortal type needs an identity, e.g. object ID.

For further categorisation of object types, it is necessary to explain the basic concepts
of the so-called modal logic as an extension of predicate logic. From predicate logic,
modal logic uses existential (there is at least one element such that…) and universal
quantifiers (for all elements…).
Also, modal logic introduces the concept of the world. To put it simply, the world in
modal logic represents a specific configuration of reality in time or space. Two more
quantifiers are being introduced for worlds:

•	 Quantifier □ – In all worlds…
•	 Quantifier ◊ – In some world (at least in one)…

Modal logic makes it possible to distinguish between classifications and invariant re-
lations and those, which may change depending on the context. The categorisation of
types also follows from modal logic:

•	 Rigid type – Type T is rigid for each instance of x just when x is necessarily (in
all worlds) an instance of type T. If x is an instance of type T in some world,
then x must be an instance of type T in every possible world.

•	 Anti-rigid type – Type T is anti-rigid for every instance of x just when it is pos-
sible (in some world) that x does not have to be an instance of type T. If x is an
instance of type T in some world, then there may be some other world where
x is not an instance of type T.

The categories of all types in OntoUML are based on the (ontological) identity prin-
ciple and modal logic and are listed in Table 1.
1.1.1. Sortal types
The <kind> and <subkind> types simply correspond to classes and subclasses ac-
cording to the UML2 concept. There is a subtle difference between <kind> (type)
and <subkind> (subtype) that UML2 does not distinguish, but OntoUML does. The
<kind> type has and provides an ontological identity, while the <subkind> type does
not have its own identity; it takes it from the <kind> type. In OntoUML, each sortal
type can have only one (ontological) identity, so type <kind> cannot be a subtype of

80 D. Buchtela, D. Vynikarová

another type <kind>. In the resulting model (see Figure 5), the type is <kind> Person
(where the identity can be, for example, a personal number or login) or Course (the
identity is the course code).
The <role> type is subject to a so-called relational dependency. The type T is relation-
ally dependent on the type P via relation R just when for each instance x of the type T
there exists an instance y of the type P such that x and y are related via R. All instan-
ces of a <role> type are of the same <kind> type, e.g., all Students (<role>) are Per-
son (<kind>). A <role> type cannot be a supertype of any rigid type. In the resulting
model (see Figure 5), the type <role> is a Student belonging to the type (<kind>) Per-
son, who studies some type (<kind>) Course, and his role is thus valid in this “world”
(course). Similarly, the role Teacher has tied to the “world” of the Course type that
this teacher teaches.
The <phase> type is defined as an anti-rigid specialisation of the <kind> or <sub-
kind> type such that the specialisation condition is intrinsic. Phases are always de-
fined in a so-called phase partition. The phase partitions are always disjoint and com-
plete generalisation sets. In the resulting model (see Figure 5), the type <phase> is
the passed or non-passed of some of the course activities (types <kind> Chapter, Pro-
ject, Test or Exercise). Which phase (type <phase>) the respective type <kind> en-
ters depends on the fulfilment of some internal condition (e.g. obtaining a specified
minimum rating). Simply put, the <phase> type can be thought of as the state of the
corresponding <kind> type.

Ta b l e 1
Categories of Types in OntoUML

Category of Type Supplies an
identity Has an identity Rigidity Dependence

SORTAL
<kind>

<subkind>
<role>

<phase>
NON-SORTAL

<category>
<roleMixin>

<mixin>

+
–
–
–

–
–
–

+
+
+
+

–
–
–

+
+

– (anti)
– (anti)

+
– (anti)
– (semi)

–
–
+
–

–
+
–

S o u r c e: Own work based on Guizzardi, 2005.

1.1.2. Non-sortal types
The <category> type is a rigid non-sortal representing the necessary (in the modal
sense) property instances of different types. Categories form the uppermost layer of
object types of ontologies and are therefore always defined as abstract classes, like all
non-sortal types. That means that all <category> types must have some sort of sortal
subtype (usually <kind>). The <kind> type can be a subtype of multiple <category>
types, and the <category> type can be a supertype of multiple <kind> types. In this case,

81Connection between OntoUML and Knowledge Representation Model…

all <kind> types in the category must be disjoint (form a disjoint generalisation set).
Otherwise, instances of their intersection would inherit multiple (ontological) identities.
The <roleMixin> type is an anti-rigid and relationally dependent non-sortal repre-
senting (in the modal sense) the properties of instances of different types. The <role-
Mixin> types are used to categorise the instance of the <role> types. However, the
<roleMixin> type cannot be a <category> supertype, because no anti-rigid non-sor-
tal can be a supertype of a rigid one.
The <mixin> type is a semi-rigid non-sortal representing properties that are (in
a modal sense) necessary for some instances but possible for some other instances.
Each <mixin> type must be a rigid type supertype (typically <kind>) and an anti-rigid
type supertype (typically <phase>). Since all <kind> types are disjoint, all subtypes
of <mixin> type form a disjoint generalisation set.

1.2. GLIKREM
The Guidelines Knowledge Representation Model (GLIKREM) is based on a Guide-
lines Interchange Format model which was published in a GLIF3.5 specification (Box-
wala et al., 2004). GLIKREM contains some changes and extensions to the definition
and implementation of the original GLIF model, which allow more accurate model-
ling of procedural knowledge as a graphical model which describes a process struc-
ture of the decision algorithm (Buchtela et al., 2010). GLIKREM also includes a par-
ameter model, which serves as an interface between the graphical model and real data.
1.2.1. Main parts (steps) of the graph
The GLIKREM created in a construction stage is an oriented graph (see Figure 1)
which is composed of five main parts (steps):

•	 Action steps specify actions that are to be performed. It can be a study of some
resource, submission of the completed task, performance of the test etc. Action
step also may name sub-guidelines (subgraph), which provide detail for the
action.

F i g u r e 1. Main parts (steps) of GLIKREM
S o u r c e: Own work.

82 D. Buchtela, D. Vynikarová

•	 Decision steps are used for conditional branching. This step is used when
branching is determined by evaluation of defined logical criteria based on data
items. If the decision cannot be made automatically, the user can select him-
self the follow-up part of the graph.

•	 Branch and synchronisation steps enable concurrence in the model. Guideline
steps that follow the branch step can be performed concurrently. Branches with
root in a branch step eventually converge in a synchronisation step. In this step,
all branches are synchronized after evaluation of the synchronizing condition.

•	 State steps characterise surveyed object states after the execution of the previ-
ous steps or at the beginning of the model.

1.2.2. Decision criteria
Each decision step specifies four criteria of condition for each decision option (see
Figure 2). The subsequent flow of the model is automatically or manually chosen
based on the evaluation of these criteria:

•	 Strict-in – if a strict-in is true, the control flows to the guideline step that is
specified by that decision option’s destination.

•	 Strict-out – if a strict-out is true, the decision option’s destination is forbidden.
The strict-out can be but don’t have to be opposite of strict-in.

•	 Rule-in – if a rule-in is true, it is only recommended to flow to the guideline
step that is specified by that decision option’s destination. The user should se-
lect himself one of the next steps with positive rule-in.

•	 Rule-out – if a rule-out is true, the decision option’s destination is not recom-
mended, but it is not forbidden. The user shouldn’t select one of the next steps
with positive rule-out.

F i g u r e 2. Decision criteria in a decision step
S o u r c e: Own work.

The strict-out criterion is evaluated at first. If the strict-out criterion (of some option)
is evaluated as true the rest of the criteria (of this option) is not assessed. This option
is forbidden. In the opposite case, the strict-in criterion is evaluated. If both of strict-
in and strict-out criteria are false, the rule-in and rule-out criteria are evaluated. The
ranking of rule-ins and rule-outs (of all option’s criteria) is left to the users who may
use their clinical judgement or develop their ranking schemes.

83Connection between OntoUML and Knowledge Representation Model…

1.2.3. Criteria evaluation
When evaluating the criteria (strict-in, strict-out, rule-in, rule-out), it often happens
that input parameter values are not known. Therefore, the criteria are evaluated in
three-value logic. The logic formulas contain variables from a model of parameters
(Veselý, 2006) and logic or relational operands.
If these rules are thoroughly applied, the user can insert missing data when it is neces-
sary. If a strict-in criterion of some option (destination) is true, the evaluation of other
option criteria is not needed. The amount of essential data is dependent on the order of
single option evaluations. Therefore, it is necessary to set an order of assessment, i.e.
to set a priority of decision options. A specialist chooses the priority of each option.

2. RESULTS AND DISCUSSION

The students’ way through an electronic course (e.g. realized in LMS Moodle) can be
described using the Knowledge Representation Model of Students’ Activity (KRMSA).
The KRMSA design consists of both a graphical model (GLIKREM) of the student’s
progress and its transformation into the OntoUML model. A sample KRMSA design
is made for a model situation of a hypothetic course in LMS Moodle.

2.1. Model situation
The subject of the research is a full-time student, the aim of which is to obtain credit
from a hypothetic course for one semester. To complete the course (achieve the goal),
the student must meet the following conditions (C1 – C4):

•	 C1 – To study ten chapters with theory related to the subject. There are several
control questions at the end of each chapter that the student must answer cor-
rectly (he can answer in several attempts).

•	 C2 – To adequate attend at exercises. It is necessary to get at least 70% par-
ticipation in exercises.

•	 C3 – To submit an individual project. The student submits the project itself on
a given topic. The student must obtain a grade of at least 70%. It is possible to
make one repair in a separate project.

•	 C4 – To pass a credit test. The student achieves a control test of the discussed
issues. Successful completion of the test means obtaining at least 70% of the
possible evaluation. The test can be passed in a maximum of two attempts.

The course of study, i.e. attendance and results of partial conditions, is recorded in
the system for the support of electronic education (Moodle). In the same system, the
student has the necessary study materials (theoretical chapters) and feedback tools
(project submission and electronic test).

2.2. GLIKREM of model situation
The model situation will be shown in GLIKREM as four parallel branches, one branch
for each condition C1 – C4 (see Figure 3). The first branch represents the study of ten
chapters (ki), the second branch of completing 14 exercises (ci), the third branch of
achieving a separate project (p) and the last branch of passing a credit test (t). The dot-

84 D. Buchtela, D. Vynikarová

ted lines indicate the repetition of the same structure, i.e. ten times the study of the
chapter and 14 times the completion of the exercise.

•	 C1 – Study of a chapter (ki). The student repeats the study of the chapter ki
until he answers the control questions correctly, i.e. until the strict-in criterion
of the branch κi1 is true.

•	 C2 – Completion of exercises (ci). The student either participates in each exer-
cise (true strict-in criterion σi1) or does not attend (true strict-in criterion σi2).
The teacher records attendance (non-attendance).

•	 C3 – Completion of the project (p). The student completes the project if the
strict-in edge criterion π1 or π3 is met. Both strict-in criteria are defined by the
condition evaluation (p) ≥ 0.7. The strict-in criteria of branches π2 and π4 are
a negation of the strict-in criteria of edges π1 and π3.

•	 C4 – Passing the test t. The student successfully passes the credit test if the
strict-in edge criterion τ1 or τ3 is met. Both strict-in criteria are defined by the
condition evaluation (t) ≥ 0.7. The strict-in criteria of branches τ2 and τ4 are
a negation of the strict-in criteria of edges τ1 and τ3.

F i g u r e 3. GLIKREM of model situation
S o u r c e: Own work.

Credit. The student gets the credit if the strict-in criterion of the edge ψ1 is met, i.e.,
the student completes the study of all chapters (ki), completes at least 70% of exer-
cises, or completes the project p and successfully passes the test t. The strict-in cri-

85Connection between OntoUML and Knowledge Representation Model…

terion of an edge ψ2 is defined as a negation of the strict-in criterion of an edge ψ1.
All strict-out criteria are, in all cases, a negation of the strict-in criteria.
The rule-in and rule-out criteria are not used at all for this model situation. However,
these criteria could be used, for example, as a recommendation for the student to re-
study the study materials (Chapters) in case he fails to obtain the necessary test evalu-
ation on the first attempt (rule-in criterion of edge τ2). Studying the chapters again is
not obligatory for the student (strict-in), but only recommended (rule-in).

2.3. OntoUML conceptual diagram of the model situation
When transforming GLIKREM to a model in OntoUML notation, it is necessary to
find all relevant types (OntoUML) based on the analysis of individual steps and par-
ameters in GLIKREM. In this process, the following rules can be generalized:

•	 Action steps are usually converted to <kind> (or <subkind>) types or relation-
ships between <role> types.

•	 The state steps are converted almost exclusively to the <phase> types of the
corresponding <kind> types.

•	 Decision steps, including decision criteria, will be applied only during the im-
plementation of the OntUML model, i.e., during its transformation into a specif-
ic implementation model. The same applies to the branch steps and synchr-
onisation steps.

The result of the GLIKREM transformation of the model situation into OntoUML is
shown in Figure 4. For clarity, the model in OntoUML is not complete, i.e. it does not
contain all the elements (types), attributes and association between types that would
be necessary for its implementation.
When transforming a model situation with GLIKREM into OntoUML, it is neces-
sary first to define the basic types <kind>, which are the Person and Course types.
Two types <role> Teacher and Student are set for the Person supertype, and both roles
have a relational dependence on the Course type.
For the Course type, three <phase> types are defined, which represent the state steps
of GLIKREM Course started, credit passed, and Credit non passed. The Course type
consists of the <kind> Chapter, Project, Test, and Exercise types corresponding to the
action steps of GLIKREM of the same name. For each activity, two types <phase>
Passed and Non passed are defined, representing the respective state steps in the
GLIKREM model situation. The first and second test attempts are implemented as
an Attempt attribute of type <kind> Test.
All decision conditions (or criteria) and the actual process of transition between phas-
es (types <phase>) are implemented in the corresponding methods of the respective
taps <kind>. The mentioned elements (steps) of GLIKREM, i.e. decision steps and
synchronisation steps including decision criteria, are not transferred to OntoUML at
the conceptual level of the model, but only subsequently in the phase of transfer to
a specific implementation model.

86 D. Buchtela, D. Vynikarová

F i g u r e 4. The model situation in OntoUML notation
S o u r c e: Own work.

CONCLUSION
This article proposes a Knowledge Representation Model of Students’ Activities
(KRMSA), which describes a model situation of a student passing an electronic course
and obtaining credit from this course. The resulting KRMSA model situation is based
on the Guideline Knowledge Representation Model (GLIKREM) and its subsequent
transformation into a conceptual model in OntoUML notation.
From the conceptual model in OntoUML, it is then possible to derive a specific im-
plementation model usable, for example, for automatic student evaluation in a given
course or as the basis of decision support systems in the background of LMS Moo-
dle. The resulting model is based on the described model situation but is easily adapt-
able to any other situation according to the requirements for completing the course.

87Connection between OntoUML and Knowledge Representation Model…

ACKNOWLEDGEMENTS
Centre of Business Informatics supported this work at the Faculty of Information
Technology, CTU in Prague.

REFERENCES
B o x w a l a, A. A., P e l e g, M., T u, S. W., O g u n y e m i, O., Z e n g, Q., & Wa n g, D. (2004).

GLIF3: A Representation Format for Sharable Computer-Interpretable Clinical Practice
Guidelines, Journal of the Biomedical Informatics, 37(3), pp. 147–161.

B u c h t e l a, D., Ve s e l ý, A., & Vy n i k a r o v á, D. (2010). Guideline Knowledge Rep-
resentation Model (GLIKREM). Knowledge Management and Modern Information Tech-
nologies, pp. 26–41. Prague: Alfa publishing.

G u i z z a r d i, G. (2005). Ontological foundations for structural conceptual models. Ensch-
ede: Telematica Instituut / CTIT.

K o ķ e, T. (2003). Continuous Education: the Main Tasks and Their Implementation. Nepār-
trauktās iz glītības sociāli pedagoģiskie aspekti. Rīga: SIA “Izglītībassoļi”, pp. 4–16.

P e l e š k a, J., B u c h t e l a, D., A n g e r, Z., Š e b e s t a, K., T o m e č k o v á, M., Ve s e l ý,
A., Zv á r a, K., & Z v á r o v á, J. (2005). Formalisation of Medical Guidelines. European
Journal for Biomedical Informatics, pp. 133–141.

R y b o l a, Z., P e r g l, R. (2016). Towards OntoUML for Software Engineering: Transform-
ation of Rigid Sortal Types into Relational Databases. Proceedings of the 2016 Federat-
ed Conference on Computer Science and Information Systems, Vol. 8 (pp. 1581–1591).
M. Ganzha, L. Maciaszek, M. Paprzycki (Eds).

R y b o l a, Z., P e r g l, R. (2017). Towards OntoUML for Software Engineering: Transform-
ation of Kinds and Subkinds into Relational Databases. Computer Science and Informa-
tion Systems, 14(3), pp. 913–937.

S t o y a n o v a - D o y c h e v a, A., G l u s h k o v a, T., & I v a n o v a, V. (2019). Application
of subject domain ontologies in e-learning. E-learning and STEM Education Scientific.
Editor E. Smyrnova-Trybulska. “E-learning”, 11, Katowice–Cieszyn, pp. 93–107.

Ve s e l ý, A., Z v á r o v á, J., P e l e š k a, J., B u c h t e l a, D., & A n g e r, Z. (2006). Medic-
al Guidelines Presentation and Comparing with Electronic Health Record. International
Journal of Medical Informatics, 75(3–4), pp. 240–245.

