Przejdź do treści

Uniwersytet Śląski w Katowicach

asa
asa
Instytut Matematyki

prof. dr hab. Jan Cholewa

Jan Cholewa
Stanowisko:

Grupa:

Specjalność:

Pokój:

Telefon:

e-mail:

Logo ORCID

Profesor

Pracownicy badawczo-dydaktyczni

Równania różniczkowe

538

(32) 359 19 52

jan.cholewa@us.edu.pl

0000-0003-1874-9477

 

Pełnione funkcje Pełnione funkcje

Członek Rady Naukowej Instytutu Matematyki

CV CV

Born 1966; mathematical studies at the University of Silesia in Katowice, master degree 1990; doctor of mathematics 1993; habilitation 2000; professor of mathematics 2009.

Plan zajęć Plan zajęć

2020/21 semestr zimowy

 

Środa

13:45 – 15:15 RKKzM – Analiza zespolona (ćw. w wyznaczonych datach od 21.20.2020) sala 231

 


Czwartek

  9:45 – 11:15 Analiza zespolona (wykład)  
12:15 – 13:45 Konsultacje  

Piątek

  9:45 – 10:30 Analiza zespolona (ćw.) sala 420
10:30 – 11:15 RKKzM – Analiza zespolona (ćw.) sala 420
11:30 – 12:15 Analiza zespolona (grupa B, ćw.) sala 213
12:30 – 13:15 Analiza zespolona (grupa A, ćw.) sala 233

Publikacje Publikacje

Artykuły naukowe

Lp. Autorzy Tytuł Dane bibliograficzne

1. Jan Cholewa Local solvability of higher-order semilinear parabolic equations Hokkaido Math. J., 21 (1992), no. 3, 491–508, doi:10.14492/hokmj/1381413724.
2. Jan Cholewa Higher-dimensional semilinear parabolic problems Hokkaido Math. J., 22 (1993), no. 3, 365–371, doi:10.14492/hokmj/1381413180.
3. Jan Cholewa, Tomasz Dłotko Global attractor for the Cahn-Hilliard system Bull. Austral. Math. Soc., 49 (1994), no. 2, 277–292, doi:10.1017/S0004972700016348.
4. Jan Cholewa Local existence of solutions of 2m-th order semilinear parabolic equations Demonstratio Math., 28 (1995), no. 4, 929–944.
5. Jan Cholewa, Tomasz Dłotko Global attractor for sectorial evolutionary equation J. Differential Equations, 125 (1996), no. 1, 27–39, doi:10.1006/jdeq.1996.0023.
6. Jan Cholewa, Tomasz Dłotko Global attractors for parabolic P.D.E.’s in Hölder spaces Tsukuba J. Math., 21 (1997), no. 2, 263–283, doi:10.21099/tkbjm/1496163241.
7. Jan Cholewa, Tomasz Dłotko Cauchy problem with subcritical nonlinearity J. Math. Anal. Appl., 210 (1997), no. 2, 531–548, doi:10.1006/jmaa.1997.5409.
8. Jan Cholewa, Tomasz Dłotko Local attractor for n-D Navier-Stokes system Hiroshima Math. J., 28 (1998), no. 2, 309–319.

9. Alexandre N. Carvalho, Jan Cholewa, Tomasz Dłotko Examples of global attractors in parabolic problems Hokkaido Math. J., 27 (1998), no. 1, 77–103, doi:10.14492/hokmj/1351001252.
10. Alexandre N. Carvalho, Jan Cholewa, Tomasz Dłotko Global attractors for problems with monotone operators Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., (8) 2 (1999), no. 3, 693–706.
11. Jan Cholewa, Jack K. Hale Some counterexamples in dissipative systems Dynam. Contin. Discrete Impuls. Systems, 7 (2000), no. 2, 159–176.
12. Jan Cholewa, Tomasz Dłotko Remarks on the powers of elliptic operators Rev. Mat. Complut., 13 (2000), no. 2, 325–336, doi:10.5209/rev_REMA.2000.v13.n2.17075.
13. Alexandre N. Carvalho, Jan Cholewa, Tomasz Dłotko Abstract parabolic problems in ordered Banach spaces Colloq. Math., 90 (2001), no. 1, 1–17,
doi:10.4064/cm90-1-1.
14. Jan Cholewa Some atypical properties of solutions of nonlinear evolution equations Wiadom. Mat., 38 (2002), 53–60.

15. Alexandre N. Carvalho, Jan Cholewa Local well posedness for strongly damped wave equations with critical nonlinearities Bull. Austral. Math. Soc., 66 (2002), no. 3, 443–463, doi:10.1017/S0004972700040296.
16. Alexandre N. Carvalho, Jan Cholewa Attractors for strongly damped wave equations with critical nonlinearities Pacific J. Math., 207 (2002), no. 2, 287–310, doi:10.2140/pjm.2002.207.287.
17. Jan Cholewa, Tomasz Dłotko, Andrzej W. Turski Asymptotics of pseudodifferential parabolic equations Demonstratio Math., 35 (2002), no. 1, 75–91.
18. Jan Cholewa, Tomasz Dłotko Parabolic equations with critical nonlinearities Topol. Methods Nonlinear Anal., 21 (2003), no. 2, 311–324, doi:10.12775/TMNA.2003.019
19. Jose M. Arrieta, Anibal Rodriguez-Bernal, Jan Cholewa, Tomasz Dlotko Linear parabolic equations in locally uniform spaces Math. Models Methods Appl. Sci., 14 (2004), no. 2, 253–293, doi:10.1142/S0218202504003234
20. Jan Cholewa, Tomasz Dłotko Hyperbolic equations in uniform spaces Bull. Pol. Acad. Sci. Math., 52 (2004), no. 3, 249–263, doi:10.4064/ba52-3-5
21. Jan Cholewa, Tomasz Dłotko Cauchy problems in weighted Lebesgue spaces Czechoslovak Math. J., 54 (2004), no. 4, 991–1013, doi: 10.1007/s10587-004-6447-z
22. Jose M. Arrieta,  Jan Cholewa, Tomasz Dlotko, Anibal Rodriguez-Bernal Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains Nonlinear Anal., 56 (2004), no. 4, 515–554, doi:10.1016/j.na.2003.09.023
23. Alexandre N. Carvalho, Jan Cholewa Continuation and asymptotics of solutions to semilinear parabolic equations with critical nonlinearities J. Math. Anal. Appl., 310 (2005), no. 2, 557–578, doi:10.1016/j.jmaa.2005.02.024.
24. Simone M. Bruschi, Alexandre N. Carvalho, Jan Cholewa, Tomasz Dlotko Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations J. Dynam. Differential Equations, 18 (2006), no. 3, 767–814, doi:10.1007/s10884-006-9023-4.
25. Jan Cholewa, Tomasz Dlotko Strongly damped wave equation in uniform spaces Nonlinear Anal., 64 (2006), no. 1, 174–187, doi:10.1016/j.na.2005.06.021.
26. Jan Cholewa, Jack K. Hale From point dissipative to compact dissipative. Addendum to: “Some counterexamples in dissipative systems” Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14 (2007), no. 1, 147–164.
27. Jose M. Arrieta,  Jan Cholewa, Tomasz Dłotko, Anibal Rodriguez-Bernal Dissipative parabolic equations in locally uniform spaces Math. Nachr. 280 (2007), no. 15, 1643–1663, doi:10.1002/mana.200510569
28. Alexandre N. Carvalho, Jan Cholewa, Tomasz Dłotko Strongly damped wave problems: bootstrapping and regularity of solutions J. Differential Equations, 244 (2008), no.9, 2310-2333, doi:10.1016/j.jde.2008.02.011
29. Jan Cholewa, Radosław Czaja, Gianluca Mola Remarks on the fractal dimension of bi-space global and exponential attractors Boll. Unione Mat. Ital., (9) 1 (2008), no. 1, 121–145.
30. Alexandre N. Carvalho, Jan Cholewa Regularity of solutions on the global attractor for a semilinear damped wave equation J. Math. Anal. Appl., 337 (2008), no. 2, 932–948, doi:10.1016/j.jmaa.2007.04.051
31. Alexandre N. Carvalho, Jan Cholewa Local well posedness, asymptotic behavior and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time Trans. Amer. Math. Soc., 361 (2009), no. 5, 2567–2586, doi:10.1090/S0002-9947-08-04789-2
32. Jan Cholewa, Anibal Rodriguez-Bernal Extremal equilibria for dissipative parabolic equations in locally uniform spaces Math. Models Methods Appl. Sci., 19 (2009), no. 11, 1995–2037, doi:10.1142/S0218202509004029
33. Alexandre N. Carvalho, Jan Cholewa, Tomasz Dłotko Damped wave equations with fast growing dissipative nonlinearities Discrete Contin. Dyn. Syst., 24 (2009), no. 4, 1147–1165, doi:10.3934/dcds.2009.24.1147
34. Jan Cholewa, Anibal Rodriguez-Bernal Extremal equilibria for monotone semigroups in ordered spaces with application to evolutionary equations J. Differential Equations, 249 (2010), no. 3, 485–525, doi:10.1016/j.jde.2010.04.006
35. Alexandre N. Carvalho, Jan Cholewa Exponential global attractors for semigroups in metric spaces with applications to differential equations Ergodic Theory Dynam. Systems, 31 (2011), no. 6, 1641–1667, doi:10.1017/S0143385710000702
36. Jan Cholewa, Anibal Rodriguez-Bernal On the Cahn-Hilliard equation in H1(RN) J. Differential Equations, 253 (2012), no. 12, 3678–3726, doi:10.1016/j.jde.2012.08.033
37. Jan Cholewa, Anibal Rodriguez-Bernal Linear and semilinear higher order parabolic equations in RN Nonlinear Anal., 75 (2012), no. 1, 194–210, doi:10.1016/j.na.2011.08.022
38. Jan Cholewa, Anibal Rodriguez-Bernal Dissipative mechanism of a semilinear higher order parabolic equation in RN Nonlinear Anal., 75 (2012), no. 8, 3510–3530, doi:10.1016/j.na.2012.01.011
39. Alexandre N. Carvalho, Jan Cholewa, Germán Lozada-Cruz, Marcos R. T. Primo Reduction of infinite dimensional systems to finite dimensions: compact convergence approach SIAM J. Math. Anal., 45 (2013), no. 2, 600–638, doi:10.1137/10080734X
40. Alexandre N. Carvalho, Jan Cholewa, Tomasz Dłotko Equi-exponential attraction and rate of convergence of attractors with application to a perturbed damped wave equation Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), no. 1, 13–51, doi:10.1017/S0308210511001235
41. Jan. Cholewa, Anibal Rodriguez-Bernal Critical and supercritical higher order parabolic problems in RN Nonlinear Anal., 104 (2014), 50–74, doi:10.1016/j.na.2014.03.013
42. Jan Cholewa, Anibal Rodriguez-Bernal A note on the Cahn-Hilliard equation in H1(RN) involving critical exponent Math. Bohem., 139 (2014), no. 2, 269–283.
43. Alexandre N. Carvalho, Jan Cholewa, Marcelo J. D. Nascimento   On the continuation of solutions of non-autonomous semilinear parabolic problems Proc. Edinb. Math. Soc., (2) 59 (2016), no. 1, 17–55, doi:10.1017/S001309151400039X
44. Flank D. M. Bezerra, Alexandre N. Carvalho, Jan Cholewa, Marcelo J. D. Nascimento Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics J. Math. Anal. Appl., 450 (2017), no. 1, 377–405, doi:10.1016/j.jmaa.2017.01.024
45. Jan Cholewa, Carlos Quesada, Anibal Rodriguez-Bernal Nonlinear evolution equations in scales of Banach spaces and applications to PDEs J. Abstr. Differ. Equ. Appl., 8 (2017), no. 2, 1–69.
46. Jan Cholewa, Anibal Rodriguez-Bernal Linear higher order parabolic problems in locally uniform Lebesgue’s spaces J. Math. Anal. Appl., 449 (2017), no. 1, 1–45, doi: 10.1016/j.jmaa.2016.11.085.
47. Alexandre N. Carvalho, Jan Cholewa NLS-like equations in bounded domains: parabolic approximation procedure Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), no. 1, 57–77, doi:10.3934/dcdsb.2018005
48. Jan Cholewa, Tomasz Dłotko Fractional Navier-Stokes equations Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), no. 8, 2967–2988, doi:10.3934/dcdsb.2017149.
49. Jan Cholewa, Tomasz Dłotko A note on the 3-D Navier-Stokes equations Topol. Methods Nonlinear Anal., 52 (2018), no. 1, 195–212.
50. Jan Cholewa, Radosław Czaja Lattice dynamical systems: dissipative mechanism and fractal dimension of global and exponential attractors Journal of Evolution Equations, 20 (2020), no. 2, 485–515, doi:10.1007/s00028-019-00535-3.
       

Monografie naukowe

Lp. Autorzy Tytuł Dane bibliograficzne

1. Jan Cholewa, Tomasz Dłotko Global attractors in abstract parabolic problems London Mathematical Society Lecture Note Series, 278, Cambridge University Press, Cambridge, 2000, doi: 10.1017/CBO9780511526404, ISBN-13: 9780521794244 | ISBN-10: 0521794242.
       

Materiały konferencyjne / rozdziały w monografiach naukowych

Lp. Autorzy Tytuł rozdziału Tytuł całości Dane bibliograficzne

1. Jan Cholewa, Tomasz Dłotko Global solutions via partial information and the Cahn-Hilliard equation Singularities and differential equations  Banach Center Publ. (33), Warsaw, Polish Acad. Sci. Inst. Math., 1996, 39–50.
2. Jan Cholewa, Tomasz Dłotko Abstract parabolic problem with non-Lipschitz nonlinearity Evolution equations: existence, regularity and singularities Banach Center Publ. (52), Warsaw, Polish Acad. Sci. Inst. Math., 2000, 73–81.
3. Jan Cholewa, Tomasz Dłotko Bi-spaces global attractors in abstract parabolic equations Evolution equations Banach Center Publ. (60), Warsaw, Polish Acad. Sci. Inst. Math., 2003, 13–26.
4. Alexandre N. Carvalho, Jan Cholewa Strongly damped wave equations in  W01,p(Ω)×Lp(Ω) Dynamical systems and differential equations. Proceedings of the 6th AIMS International Conference  Discrete Contin. Dyn. Syst., supplement, 2007, 230–239,
ISBN: 978-1-60133-010-9; 1-60133-010-3.
         

return to top